Kalkulus Contoh

Evaluasi Integralnya integral dari 0 ke 1 dari (x-4)/(x^2-5x+6) terhadap x
Langkah 1
Tulis pecahan menggunakan penguraian pecahan parsial.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Uraikan pecahan dan kalikan dengan penyebut persekutuan.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1
Faktorkan menggunakan metode AC.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1.1
Mempertimbangkan bentuk . Tentukan pasangan bilangan bulat yang hasil kalinya (Variabel1) dan jumlahnya . Dalam hal ini, hasil kalinya dan jumlahnya .
Langkah 1.1.1.2
Tulis bentuk yang difaktorkan menggunakan bilangan bulat ini.
Langkah 1.1.2
Untuk setiap faktor pada penyebut, buat pecahan baru menggunakan faktor sebagai penyebutnya, dan nilai yang tidak diketahui sebagai pembilangnya. karena faktor pada penyebutnya linear, letakkan sebuah variabel di tempat .
Langkah 1.1.3
Untuk setiap faktor pada penyebut, buat pecahan baru menggunakan faktor sebagai penyebutnya, dan nilai yang tidak diketahui sebagai pembilangnya. karena faktor pada penyebutnya linear, letakkan sebuah variabel di tempat .
Langkah 1.1.4
Kalikan setiap pecahan dalam persamaan dengan penyebut dari pernyataan awalnya. Dalam hal ini, penyebutnya adalah .
Langkah 1.1.5
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.5.1
Batalkan faktor persekutuan.
Langkah 1.1.5.2
Tulis kembali pernyataannya.
Langkah 1.1.6
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.6.1
Batalkan faktor persekutuan.
Langkah 1.1.6.2
Bagilah dengan .
Langkah 1.1.7
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.7.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.7.1.1
Batalkan faktor persekutuan.
Langkah 1.1.7.1.2
Bagilah dengan .
Langkah 1.1.7.2
Terapkan sifat distributif.
Langkah 1.1.7.3
Pindahkan ke sebelah kiri .
Langkah 1.1.7.4
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.7.4.1
Batalkan faktor persekutuan.
Langkah 1.1.7.4.2
Bagilah dengan .
Langkah 1.1.7.5
Terapkan sifat distributif.
Langkah 1.1.7.6
Pindahkan ke sebelah kiri .
Langkah 1.1.8
Pindahkan .
Langkah 1.2
Buatlah persamaan untuk variabel pecahan parsial dan gunakan untuk membuat sistem persamaan.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.1
Buat persamaan dari variabel pecahan parsial dengan menyamakan koefisien dari masing-masing sisi persamaan. Agar persamaannya sama, koefisien setara pada setiap sisi persamaan harus sama.
Langkah 1.2.2
Buat persamaan untuk variabel pecahan parsial dengan menyamakan koefisien suku yang tidak memuat . Agar persamaannya sama, koefisien setara pada setiap sisi persamaan harus sama.
Langkah 1.2.3
Buat sistem persamaan untuk menentukan koefisien dari pecahan parsialnya.
Langkah 1.3
Selesaikan sistem persamaan tersebut.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.1
Selesaikan dalam .
Ketuk untuk lebih banyak langkah...
Langkah 1.3.1.1
Tulis kembali persamaan tersebut sebagai .
Langkah 1.3.1.2
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 1.3.2
Substitusikan semua kemunculan dengan dalam masing-masing persamaan.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.2.1
Substitusikan semua kemunculan dalam dengan .
Langkah 1.3.2.2
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.2.2.1
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 1.3.2.2.1.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.2.2.1.1.1
Terapkan sifat distributif.
Langkah 1.3.2.2.1.1.2
Kalikan dengan .
Langkah 1.3.2.2.1.1.3
Kalikan dengan .
Langkah 1.3.2.2.1.2
Kurangi dengan .
Langkah 1.3.3
Selesaikan dalam .
Ketuk untuk lebih banyak langkah...
Langkah 1.3.3.1
Tulis kembali persamaan tersebut sebagai .
Langkah 1.3.3.2
Pindahkan semua suku yang tidak mengandung ke sisi kanan dari persamaan.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.3.2.1
Tambahkan ke kedua sisi persamaan.
Langkah 1.3.3.2.2
Tambahkan dan .
Langkah 1.3.3.3
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.3.3.1
Bagilah setiap suku di dengan .
Langkah 1.3.3.3.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.3.3.2.1
Membagi dua nilai negatif menghasilkan nilai positif.
Langkah 1.3.3.3.2.2
Bagilah dengan .
Langkah 1.3.3.3.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.3.3.3.1
Bagilah dengan .
Langkah 1.3.4
Substitusikan semua kemunculan dengan dalam masing-masing persamaan.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.4.1
Substitusikan semua kemunculan dalam dengan .
Langkah 1.3.4.2
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.4.2.1
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 1.3.4.2.1.1
Kalikan dengan .
Langkah 1.3.4.2.1.2
Kurangi dengan .
Langkah 1.3.5
Sebutkan semua penyelesaiannya.
Langkah 1.4
Ganti masing-masing koefisien pecahan parsial dalam dengan nilai-nilai yang didapat dari dan .
Langkah 1.5
Pindahkan tanda negatif di depan pecahan.
Langkah 2
Bagi integral tunggal menjadi beberapa integral.
Langkah 3
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 4
Biarkan . Kemudian . Tulis kembali menggunakan dan .
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Biarkan . Tentukan .
Ketuk untuk lebih banyak langkah...
Langkah 4.1.1
Diferensialkan .
Langkah 4.1.2
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 4.1.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.1.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.1.5
Tambahkan dan .
Langkah 4.2
Substitusikan batas bawah untuk di .
Langkah 4.3
Kurangi dengan .
Langkah 4.4
Substitusikan batas atas untuk di .
Langkah 4.5
Kurangi dengan .
Langkah 4.6
Nilai-nilai yang ditemukan untuk dan akan digunakan untuk mengevaluasi integral tentunya.
Langkah 4.7
Tulis kembali soalnya menggunakan , , dan batas integral yang baru.
Langkah 5
Integral dari terhadap adalah .
Langkah 6
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 7
Biarkan . Kemudian . Tulis kembali menggunakan dan .
Ketuk untuk lebih banyak langkah...
Langkah 7.1
Biarkan . Tentukan .
Ketuk untuk lebih banyak langkah...
Langkah 7.1.1
Diferensialkan .
Langkah 7.1.2
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 7.1.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 7.1.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 7.1.5
Tambahkan dan .
Langkah 7.2
Substitusikan batas bawah untuk di .
Langkah 7.3
Kurangi dengan .
Langkah 7.4
Substitusikan batas atas untuk di .
Langkah 7.5
Kurangi dengan .
Langkah 7.6
Nilai-nilai yang ditemukan untuk dan akan digunakan untuk mengevaluasi integral tentunya.
Langkah 7.7
Tulis kembali soalnya menggunakan , , dan batas integral yang baru.
Langkah 8
Integral dari terhadap adalah .
Langkah 9
Substitusikan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 9.1
Evaluasi pada dan pada .
Langkah 9.2
Evaluasi pada dan pada .
Langkah 9.3
Hilangkan tanda kurung.
Langkah 10
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 10.1
Gunakan sifat hasil bagi dari logaritma, .
Langkah 10.2
Gunakan sifat hasil bagi dari logaritma, .
Langkah 11
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 11.1
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 11.2
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 11.3
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 11.4
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 12
Hasilnya dapat ditampilkan dalam beberapa bentuk.
Bentuk Eksak:
Bentuk Desimal:
Langkah 13