Masukkan soal...
Kalkulus Contoh
,
Langkah 1
Langkah 1.1
Tentukan turunan pertamanya.
Langkah 1.1.1
Tentukan turunan pertamanya.
Langkah 1.1.1.1
Diferensialkan.
Langkah 1.1.1.1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.1.1.1.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.1.2
Evaluasi .
Langkah 1.1.1.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.1.2.3
Kalikan dengan .
Langkah 1.1.1.3
Diferensialkan menggunakan Aturan Konstanta.
Langkah 1.1.1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.1.3.2
Tambahkan dan .
Langkah 1.1.2
Turunan pertama dari terhadap adalah .
Langkah 1.2
Buat turunan pertamanya agar sama dengan dan selesaikan persamaan .
Langkah 1.2.1
Buat turunan pertamanya agar sama dengan .
Langkah 1.2.2
Faktorkan dari .
Langkah 1.2.2.1
Faktorkan dari .
Langkah 1.2.2.2
Faktorkan dari .
Langkah 1.2.2.3
Faktorkan dari .
Langkah 1.2.3
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 1.2.4
Atur sama dengan .
Langkah 1.2.5
Atur agar sama dengan dan selesaikan .
Langkah 1.2.5.1
Atur sama dengan .
Langkah 1.2.5.2
Selesaikan untuk .
Langkah 1.2.5.2.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 1.2.5.2.2
Ambil akar yang ditentukan dari kedua sisi persamaan untuk menghilangkan eksponen di sisi kiri.
Langkah 1.2.5.2.3
Sederhanakan .
Langkah 1.2.5.2.3.1
Tulis kembali sebagai .
Langkah 1.2.5.2.3.2
Tulis kembali sebagai .
Langkah 1.2.5.2.3.3
Tulis kembali sebagai .
Langkah 1.2.5.2.4
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 1.2.5.2.4.1
Pertama, gunakan nilai positif dari untuk menemukan penyelesaian pertama.
Langkah 1.2.5.2.4.2
Selanjutnya, gunakan nilai negatif dari untuk menemukan penyelesaian kedua.
Langkah 1.2.5.2.4.3
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 1.2.6
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
Langkah 1.3
Tentukan nilai saat turunannya tidak terdefinisi.
Langkah 1.3.1
Domain dari pernyataan adalah semua bilangan riil, kecuali di mana pernyataannya tidak terdefinisi. Dalam hal ini, tidak ada bilangan riil yang membuat pernyataannya tidak terdefinisi.
Langkah 1.4
Evaluasi di setiap nilai di mana turunannya adalah atau tidak terdefinisi.
Langkah 1.4.1
Evaluasi pada .
Langkah 1.4.1.1
Substitusikan untuk .
Langkah 1.4.1.2
Sederhanakan.
Langkah 1.4.1.2.1
Sederhanakan setiap suku.
Langkah 1.4.1.2.1.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 1.4.1.2.1.2
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 1.4.1.2.1.3
Kalikan dengan .
Langkah 1.4.1.2.2
Sederhanakan dengan menambahkan dan mengurangkan.
Langkah 1.4.1.2.2.1
Tambahkan dan .
Langkah 1.4.1.2.2.2
Kurangi dengan .
Langkah 1.4.2
Tuliskan semua titik-titiknya.
Langkah 2
Keluarkan titik-titik yang tidak termasuk dalam interval.
Langkah 3
Langkah 3.1
Evaluasi pada .
Langkah 3.1.1
Substitusikan untuk .
Langkah 3.1.2
Sederhanakan.
Langkah 3.1.2.1
Sederhanakan setiap suku.
Langkah 3.1.2.1.1
Satu dipangkat berapa pun sama dengan satu.
Langkah 3.1.2.1.2
Satu dipangkat berapa pun sama dengan satu.
Langkah 3.1.2.1.3
Kalikan dengan .
Langkah 3.1.2.2
Sederhanakan dengan menambahkan dan mengurangkan.
Langkah 3.1.2.2.1
Tambahkan dan .
Langkah 3.1.2.2.2
Kurangi dengan .
Langkah 3.2
Evaluasi pada .
Langkah 3.2.1
Substitusikan untuk .
Langkah 3.2.2
Sederhanakan.
Langkah 3.2.2.1
Sederhanakan setiap suku.
Langkah 3.2.2.1.1
Naikkan menjadi pangkat .
Langkah 3.2.2.1.2
Naikkan menjadi pangkat .
Langkah 3.2.2.1.3
Kalikan dengan .
Langkah 3.2.2.2
Sederhanakan dengan menambahkan dan mengurangkan.
Langkah 3.2.2.2.1
Tambahkan dan .
Langkah 3.2.2.2.2
Kurangi dengan .
Langkah 3.3
Tuliskan semua titik-titiknya.
Langkah 4
Bandingkan nilai yang ditemukan untuk setiap nilai untuk menentukan maksimum dan minimum mutlak di sepanjang interval yang diberikan. Maksimum akan terjadi pada nilai tertinggi dan minimum akan terjadi pada nilai terendah.
Maksimum Mutlak:
Minimum Mutlak:
Langkah 5