Masukkan soal...
Kalkulus Contoh
on ,
Langkah 1
Langkah 1.1
Tentukan turunan pertamanya.
Langkah 1.1.1
Tentukan turunan pertamanya.
Langkah 1.1.1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.1.1.2
Evaluasi .
Langkah 1.1.1.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.1.2.3
Kalikan dengan .
Langkah 1.1.1.3
Evaluasi .
Langkah 1.1.1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.1.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.1.3.3
Kalikan dengan .
Langkah 1.1.2
Turunan pertama dari terhadap adalah .
Langkah 1.2
Buat turunan pertamanya agar sama dengan dan selesaikan persamaan .
Langkah 1.2.1
Buat turunan pertamanya agar sama dengan .
Langkah 1.2.2
Faktorkan dari .
Langkah 1.2.2.1
Faktorkan dari .
Langkah 1.2.2.2
Faktorkan dari .
Langkah 1.2.2.3
Faktorkan dari .
Langkah 1.2.3
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 1.2.4
Atur agar sama dengan dan selesaikan .
Langkah 1.2.4.1
Atur sama dengan .
Langkah 1.2.4.2
Selesaikan untuk .
Langkah 1.2.4.2.1
Ambil akar yang ditentukan dari kedua sisi persamaan untuk menghilangkan eksponen di sisi kiri.
Langkah 1.2.4.2.2
Sederhanakan .
Langkah 1.2.4.2.2.1
Tulis kembali sebagai .
Langkah 1.2.4.2.2.2
Tarik suku-suku keluar dari bawah akar, dengan asumsi bilangan-bilangan riil.
Langkah 1.2.5
Atur agar sama dengan dan selesaikan .
Langkah 1.2.5.1
Atur sama dengan .
Langkah 1.2.5.2
Tambahkan ke kedua sisi persamaan.
Langkah 1.2.6
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
Langkah 1.3
Tentukan nilai saat turunannya tidak terdefinisi.
Langkah 1.3.1
Domain dari pernyataan adalah semua bilangan riil, kecuali di mana pernyataannya tidak terdefinisi. Dalam hal ini, tidak ada bilangan riil yang membuat pernyataannya tidak terdefinisi.
Langkah 1.4
Evaluasi di setiap nilai di mana turunannya adalah atau tidak terdefinisi.
Langkah 1.4.1
Evaluasi pada .
Langkah 1.4.1.1
Substitusikan untuk .
Langkah 1.4.1.2
Sederhanakan.
Langkah 1.4.1.2.1
Sederhanakan setiap suku.
Langkah 1.4.1.2.1.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 1.4.1.2.1.2
Kalikan dengan .
Langkah 1.4.1.2.1.3
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 1.4.1.2.1.4
Kalikan dengan .
Langkah 1.4.1.2.2
Tambahkan dan .
Langkah 1.4.2
Evaluasi pada .
Langkah 1.4.2.1
Substitusikan untuk .
Langkah 1.4.2.2
Sederhanakan.
Langkah 1.4.2.2.1
Sederhanakan setiap suku.
Langkah 1.4.2.2.1.1
Kalikan dengan dengan menambahkan eksponennya.
Langkah 1.4.2.2.1.1.1
Kalikan dengan .
Langkah 1.4.2.2.1.1.1.1
Naikkan menjadi pangkat .
Langkah 1.4.2.2.1.1.1.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 1.4.2.2.1.1.2
Tambahkan dan .
Langkah 1.4.2.2.1.2
Naikkan menjadi pangkat .
Langkah 1.4.2.2.1.3
Naikkan menjadi pangkat .
Langkah 1.4.2.2.1.4
Kalikan dengan .
Langkah 1.4.2.2.2
Kurangi dengan .
Langkah 1.4.3
Tuliskan semua titik-titiknya.
Langkah 2
Langkah 2.1
Evaluasi pada .
Langkah 2.1.1
Substitusikan untuk .
Langkah 2.1.2
Sederhanakan.
Langkah 2.1.2.1
Sederhanakan setiap suku.
Langkah 2.1.2.1.1
Naikkan menjadi pangkat .
Langkah 2.1.2.1.2
Kalikan dengan .
Langkah 2.1.2.1.3
Naikkan menjadi pangkat .
Langkah 2.1.2.1.4
Kalikan dengan .
Langkah 2.1.2.2
Kurangi dengan .
Langkah 2.2
Evaluasi pada .
Langkah 2.2.1
Substitusikan untuk .
Langkah 2.2.2
Sederhanakan.
Langkah 2.2.2.1
Sederhanakan setiap suku.
Langkah 2.2.2.1.1
Naikkan menjadi pangkat .
Langkah 2.2.2.1.2
Kalikan dengan .
Langkah 2.2.2.1.3
Naikkan menjadi pangkat .
Langkah 2.2.2.1.4
Kalikan dengan .
Langkah 2.2.2.2
Kurangi dengan .
Langkah 2.3
Tuliskan semua titik-titiknya.
Langkah 3
Bandingkan nilai yang ditemukan untuk setiap nilai untuk menentukan maksimum dan minimum mutlak di sepanjang interval yang diberikan. Maksimum akan terjadi pada nilai tertinggi dan minimum akan terjadi pada nilai terendah.
Maksimum Mutlak:
Minimum Mutlak:
Langkah 4