Masukkan soal...
Kalkulus Contoh
,
Langkah 1
Langkah 1.1
Tentukan turunan pertamanya.
Langkah 1.1.1
Tentukan turunan pertamanya.
Langkah 1.1.1.1
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 1.1.1.2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 1.1.1.2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 1.1.1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.1.2.3
Ganti semua kemunculan dengan .
Langkah 1.1.1.3
Diferensialkan.
Langkah 1.1.1.3.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.1.1.3.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.1.3.3
Tambahkan dan .
Langkah 1.1.1.3.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.1.3.5
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.1.3.6
Sederhanakan pernyataannya.
Langkah 1.1.1.3.6.1
Kalikan dengan .
Langkah 1.1.1.3.6.2
Pindahkan ke sebelah kiri .
Langkah 1.1.1.3.6.3
Tulis kembali sebagai .
Langkah 1.1.1.3.7
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.1.4
Sederhanakan.
Langkah 1.1.1.4.1
Susun kembali suku-suku.
Langkah 1.1.1.4.2
Susun kembali faktor-faktor dalam .
Langkah 1.1.2
Turunan pertama dari terhadap adalah .
Langkah 1.2
Buat turunan pertamanya agar sama dengan .
Langkah 1.3
Tentukan nilai saat turunannya tidak terdefinisi.
Langkah 1.3.1
Domain dari pernyataan adalah semua bilangan riil, kecuali di mana pernyataannya tidak terdefinisi. Dalam hal ini, tidak ada bilangan riil yang membuat pernyataannya tidak terdefinisi.
Langkah 1.4
Tidak ada nilai dari di domain soal awal yang nilai-turunannya adalah atau tidak terdefinisi.
Tidak ditemukan titik kritis
Tidak ditemukan titik kritis
Langkah 2
Langkah 2.1
Evaluasi pada .
Langkah 2.1.1
Substitusikan untuk .
Langkah 2.1.2
Sederhanakan.
Langkah 2.1.2.1
Kurangi dengan .
Langkah 2.1.2.2
Satu dipangkat berapa pun sama dengan satu.
Langkah 2.1.2.3
Kalikan dengan .
Langkah 2.2
Evaluasi pada .
Langkah 2.2.1
Substitusikan untuk .
Langkah 2.2.2
Sederhanakan.
Langkah 2.2.2.1
Satu dipangkat berapa pun sama dengan satu.
Langkah 2.2.2.2
Kalikan dengan .
Langkah 2.2.2.3
Kalikan dengan .
Langkah 2.2.2.4
Kurangi dengan .
Langkah 2.3
Tuliskan semua titik-titiknya.
Langkah 3
Bandingkan nilai yang ditemukan untuk setiap nilai untuk menentukan maksimum dan minimum mutlak di sepanjang interval yang diberikan. Maksimum akan terjadi pada nilai tertinggi dan minimum akan terjadi pada nilai terendah.
Tidak ada maksimum mutlak
Tidak ada minimum mutlak
Langkah 4