Kalkulus Contoh

Tentukan Maks dan Min Mutlak di sepanjang Interval f(x)=(x^2-9)^2 on -3 , 3
on ,
Langkah 1
Tentukan titik kritisnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1.1
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1.1.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 1.1.1.1.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.1.1.3
Ganti semua kemunculan dengan .
Langkah 1.1.1.2
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1.2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.1.1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.1.2.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.1.2.4
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1.2.4.1
Tambahkan dan .
Langkah 1.1.1.2.4.2
Kalikan dengan .
Langkah 1.1.1.3
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1.3.1
Terapkan sifat distributif.
Langkah 1.1.1.3.2
Terapkan sifat distributif.
Langkah 1.1.1.3.3
Gabungkan suku-sukunya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1.3.3.1
Naikkan menjadi pangkat .
Langkah 1.1.1.3.3.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 1.1.1.3.3.3
Tambahkan dan .
Langkah 1.1.1.3.3.4
Kalikan dengan .
Langkah 1.1.2
Turunan pertama dari terhadap adalah .
Langkah 1.2
Buat turunan pertamanya agar sama dengan dan selesaikan persamaan .
Ketuk untuk lebih banyak langkah...
Langkah 1.2.1
Buat turunan pertamanya agar sama dengan .
Langkah 1.2.2
Faktorkan sisi kiri persamaannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.2.1
Faktorkan dari .
Ketuk untuk lebih banyak langkah...
Langkah 1.2.2.1.1
Faktorkan dari .
Langkah 1.2.2.1.2
Faktorkan dari .
Langkah 1.2.2.1.3
Faktorkan dari .
Langkah 1.2.2.2
Tulis kembali sebagai .
Langkah 1.2.2.3
Faktorkan.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.2.3.1
Karena kedua suku merupakan kuadrat sempurna, faktorkan menggunakan rumus beda pangkat dua, di mana dan .
Langkah 1.2.2.3.2
Hilangkan tanda kurung yang tidak perlu.
Langkah 1.2.3
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 1.2.4
Atur sama dengan .
Langkah 1.2.5
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 1.2.5.1
Atur sama dengan .
Langkah 1.2.5.2
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 1.2.6
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 1.2.6.1
Atur sama dengan .
Langkah 1.2.6.2
Tambahkan ke kedua sisi persamaan.
Langkah 1.2.7
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
Langkah 1.3
Tentukan nilai saat turunannya tidak terdefinisi.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.1
Domain dari pernyataan adalah semua bilangan riil, kecuali di mana pernyataannya tidak terdefinisi. Dalam hal ini, tidak ada bilangan riil yang membuat pernyataannya tidak terdefinisi.
Langkah 1.4
Evaluasi di setiap nilai di mana turunannya adalah atau tidak terdefinisi.
Ketuk untuk lebih banyak langkah...
Langkah 1.4.1
Evaluasi pada .
Ketuk untuk lebih banyak langkah...
Langkah 1.4.1.1
Substitusikan untuk .
Langkah 1.4.1.2
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.4.1.2.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 1.4.1.2.2
Kurangi dengan .
Langkah 1.4.1.2.3
Naikkan menjadi pangkat .
Langkah 1.4.2
Evaluasi pada .
Ketuk untuk lebih banyak langkah...
Langkah 1.4.2.1
Substitusikan untuk .
Langkah 1.4.2.2
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.4.2.2.1
Naikkan menjadi pangkat .
Langkah 1.4.2.2.2
Kurangi dengan .
Langkah 1.4.2.2.3
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 1.4.3
Evaluasi pada .
Ketuk untuk lebih banyak langkah...
Langkah 1.4.3.1
Substitusikan untuk .
Langkah 1.4.3.2
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.4.3.2.1
Naikkan menjadi pangkat .
Langkah 1.4.3.2.2
Kurangi dengan .
Langkah 1.4.3.2.3
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 1.4.4
Tuliskan semua titik-titiknya.
Langkah 2
Periksa pada titik interval.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Evaluasi pada .
Ketuk untuk lebih banyak langkah...
Langkah 2.1.1
Substitusikan untuk .
Langkah 2.1.2
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 2.1.2.1
Naikkan menjadi pangkat .
Langkah 2.1.2.2
Kurangi dengan .
Langkah 2.1.2.3
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 2.2
Evaluasi pada .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1
Substitusikan untuk .
Langkah 2.2.2
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.2.1
Naikkan menjadi pangkat .
Langkah 2.2.2.2
Kurangi dengan .
Langkah 2.2.2.3
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 2.3
Tuliskan semua titik-titiknya.
Langkah 3
Bandingkan nilai yang ditemukan untuk setiap nilai untuk menentukan maksimum dan minimum mutlak di sepanjang interval yang diberikan. Maksimum akan terjadi pada nilai tertinggi dan minimum akan terjadi pada nilai terendah.
Maksimum Mutlak:
Minimum Mutlak:
Langkah 4