Masukkan soal...
Kalkulus Contoh
,
Langkah 1
Langkah 1.1
Tentukan turunan pertamanya.
Langkah 1.1.1
Tentukan turunan pertamanya.
Langkah 1.1.1.1
Diferensialkan menggunakan Kaidah Hasil Bagi yang menyatakan bahwa adalah di mana dan .
Langkah 1.1.1.2
Diferensialkan.
Langkah 1.1.1.2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.1.1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.1.2.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.1.2.4
Sederhanakan pernyataannya.
Langkah 1.1.1.2.4.1
Tambahkan dan .
Langkah 1.1.1.2.4.2
Kalikan dengan .
Langkah 1.1.1.2.5
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.1.1.2.6
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.1.2.7
Tambahkan dan .
Langkah 1.1.1.2.8
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.1.2.9
Kalikan dengan .
Langkah 1.1.1.3
Sederhanakan.
Langkah 1.1.1.3.1
Terapkan sifat distributif.
Langkah 1.1.1.3.2
Sederhanakan pembilangnya.
Langkah 1.1.1.3.2.1
Gabungkan suku balikan dalam .
Langkah 1.1.1.3.2.1.1
Kurangi dengan .
Langkah 1.1.1.3.2.1.2
Tambahkan dan .
Langkah 1.1.1.3.2.2
Kalikan dengan .
Langkah 1.1.1.3.2.3
Tambahkan dan .
Langkah 1.1.1.3.3
Susun kembali suku-suku.
Langkah 1.1.2
Turunan pertama dari terhadap adalah .
Langkah 1.2
Buat turunan pertamanya agar sama dengan dan selesaikan persamaan .
Langkah 1.2.1
Buat turunan pertamanya agar sama dengan .
Langkah 1.2.2
Atur agar pembilangnya sama dengan nol.
Langkah 1.2.3
Karena , tidak ada penyelesaian.
Tidak ada penyelesaian
Tidak ada penyelesaian
Langkah 1.3
Tentukan nilai saat turunannya tidak terdefinisi.
Langkah 1.3.1
Atur penyebut dalam agar sama dengan untuk menentukan di mana pernyataannya tidak terdefinisi.
Langkah 1.3.2
Selesaikan .
Langkah 1.3.2.1
Atur agar sama dengan .
Langkah 1.3.2.2
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 1.4
Evaluasi di setiap nilai di mana turunannya adalah atau tidak terdefinisi.
Langkah 1.4.1
Evaluasi pada .
Langkah 1.4.1.1
Substitusikan untuk .
Langkah 1.4.1.2
Sederhanakan.
Langkah 1.4.1.2.1
Hilangkan tanda kurung.
Langkah 1.4.1.2.2
Kurangi dengan .
Langkah 1.4.1.2.3
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Tidak terdefinisi
Tidak terdefinisi
Tidak terdefinisi
Langkah 1.5
Tidak ada nilai dari di domain soal awal yang nilai-turunannya adalah atau tidak terdefinisi.
Tidak ditemukan titik kritis
Tidak ditemukan titik kritis
Langkah 2
Langkah 2.1
Evaluasi pada .
Langkah 2.1.1
Substitusikan untuk .
Langkah 2.1.2
Sederhanakan.
Langkah 2.1.2.1
Hilangkan tanda kurung.
Langkah 2.1.2.2
Kurangi dengan .
Langkah 2.1.2.3
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Tidak terdefinisi
Tidak terdefinisi
Langkah 2.2
Evaluasi pada .
Langkah 2.2.1
Substitusikan untuk .
Langkah 2.2.2
Sederhanakan.
Langkah 2.2.2.1
Hilangkan tanda kurung.
Langkah 2.2.2.2
Kurangi dengan .
Langkah 2.2.2.3
Tambahkan dan .
Langkah 2.2.2.4
Pindahkan tanda negatif di depan pecahan.
Langkah 2.3
Tuliskan semua titik-titiknya.
Langkah 3
Karena tidak ada nilai dari yang membuat turunan pertama sama dengan , maka tidak ada ekstrem lokal.
Tidak Ada Ekstrem Lokal
Langkah 4
Bandingkan nilai yang ditemukan untuk setiap nilai untuk menentukan maksimum dan minimum mutlak di sepanjang interval yang diberikan. Maksimum akan terjadi pada nilai tertinggi dan minimum akan terjadi pada nilai terendah.
Maksimum Mutlak:
Tidak ada minimum mutlak
Langkah 5