Masukkan soal...
Kalkulus Contoh
,
Langkah 1
Langkah 1.1
Diferensialkan menggunakan Kaidah Hasil Bagi yang menyatakan bahwa adalah di mana dan .
Langkah 1.2
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana =.
Langkah 1.3
Diferensialkan.
Langkah 1.3.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.4
Sederhanakan pernyataannya.
Langkah 1.3.4.1
Tambahkan dan .
Langkah 1.3.4.2
Kalikan dengan .
Langkah 1.4
Sederhanakan.
Langkah 1.4.1
Terapkan sifat distributif.
Langkah 1.4.2
Kurangi dengan .
Langkah 1.4.3
Susun kembali suku-suku.
Langkah 1.4.4
Faktorkan dari .
Langkah 1.4.4.1
Faktorkan dari .
Langkah 1.4.4.2
Faktorkan dari .
Langkah 1.4.4.3
Faktorkan dari .
Langkah 1.5
Evaluasi turunan pada .
Langkah 1.6
Sederhanakan.
Langkah 1.6.1
Sederhanakan pembilangnya.
Langkah 1.6.1.1
Tambahkan dan .
Langkah 1.6.1.2
Apa pun yang dinaikkan ke adalah .
Langkah 1.6.1.3
Kalikan dengan .
Langkah 1.6.2
Sederhanakan penyebutnya.
Langkah 1.6.2.1
Tambahkan dan .
Langkah 1.6.2.2
Naikkan menjadi pangkat .
Langkah 2
Langkah 2.1
Gunakan gradien dan titik yang diberikan untuk menggantikan dan dalam bentuk titik kemiringan , yang diturunkan dari persamaan gradien .
Langkah 2.2
Sederhanakan persamaannya dan pastikan tetap dalam bentuk titik kemiringan.
Langkah 2.3
Selesaikan .
Langkah 2.3.1
Sederhanakan .
Langkah 2.3.1.1
Tambahkan dan .
Langkah 2.3.1.2
Gabungkan dan .
Langkah 2.3.2
Tambahkan ke kedua sisi persamaan.
Langkah 2.3.3
Susun kembali suku-suku.
Langkah 3