Kalkulus Contoh

Tentukan Garis Singgung pada (0,0) y=sin(8x)+sin(8x)^2 , (0,0)
,
Langkah 1
Tentukan turunan pertama dan evaluasi di dan untuk menentukan gradien garis tangen.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.2
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 1.2.1
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 1.2.1.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 1.2.1.2
Turunan dari terhadap adalah .
Langkah 1.2.1.3
Ganti semua kemunculan dengan .
Langkah 1.2.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.2.4
Kalikan dengan .
Langkah 1.2.5
Pindahkan ke sebelah kiri .
Langkah 1.3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 1.3.1
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 1.3.1.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 1.3.1.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.1.3
Ganti semua kemunculan dengan .
Langkah 1.3.2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 1.3.2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 1.3.2.2
Turunan dari terhadap adalah .
Langkah 1.3.2.3
Ganti semua kemunculan dengan .
Langkah 1.3.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.5
Kalikan dengan .
Langkah 1.3.6
Pindahkan ke sebelah kiri .
Langkah 1.3.7
Kalikan dengan .
Langkah 1.4
Susun kembali suku-suku.
Langkah 1.5
Evaluasi turunan pada .
Langkah 1.6
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.6.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 1.6.1.1
Kalikan dengan .
Langkah 1.6.1.2
Nilai eksak dari adalah .
Langkah 1.6.1.3
Kalikan dengan .
Langkah 1.6.1.4
Kalikan dengan .
Langkah 1.6.1.5
Nilai eksak dari adalah .
Langkah 1.6.1.6
Kalikan dengan .
Langkah 1.6.1.7
Kalikan dengan .
Langkah 1.6.1.8
Nilai eksak dari adalah .
Langkah 1.6.1.9
Kalikan dengan .
Langkah 1.6.2
Tambahkan dan .
Langkah 2
Masukkan nilai gradien dan titik koordinat ke dalam rumus persamaan garis lurus dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Gunakan gradien dan titik yang diberikan untuk menggantikan dan dalam bentuk titik kemiringan , yang diturunkan dari persamaan gradien .
Langkah 2.2
Sederhanakan persamaannya dan pastikan tetap dalam bentuk titik kemiringan.
Langkah 2.3
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1
Tambahkan dan .
Langkah 2.3.2
Tambahkan dan .
Langkah 3