Masukkan soal...
Kalkulus Contoh
;
Langkah 1
Langkah 1.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2
Diferensialkan menggunakan Kaidah Hasil Bagi yang menyatakan bahwa adalah di mana dan .
Langkah 1.3
Diferensialkan.
Langkah 1.3.1
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.2
Kalikan dengan .
Langkah 1.3.3
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.3.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.5
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.6
Sederhanakan pernyataannya.
Langkah 1.3.6.1
Tambahkan dan .
Langkah 1.3.6.2
Kalikan dengan .
Langkah 1.4
Naikkan menjadi pangkat .
Langkah 1.5
Naikkan menjadi pangkat .
Langkah 1.6
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 1.7
Tambahkan dan .
Langkah 1.8
Kurangi dengan .
Langkah 1.9
Gabungkan dan .
Langkah 1.10
Sederhanakan.
Langkah 1.10.1
Terapkan sifat distributif.
Langkah 1.10.2
Sederhanakan setiap suku.
Langkah 1.10.2.1
Kalikan dengan .
Langkah 1.10.2.2
Kalikan dengan .
Langkah 1.11
Evaluasi turunan pada .
Langkah 1.12
Sederhanakan.
Langkah 1.12.1
Sederhanakan pembilangnya.
Langkah 1.12.1.1
Naikkan menjadi pangkat .
Langkah 1.12.1.2
Kalikan dengan .
Langkah 1.12.1.3
Kurangi dengan .
Langkah 1.12.2
Sederhanakan penyebutnya.
Langkah 1.12.2.1
Naikkan menjadi pangkat .
Langkah 1.12.2.2
Kurangi dengan .
Langkah 1.12.2.3
Naikkan menjadi pangkat .
Langkah 1.12.3
Kurangi pernyataan tersebut dengan menghapus faktor persekutuan.
Langkah 1.12.3.1
Hapus faktor persekutuan dari dan .
Langkah 1.12.3.1.1
Faktorkan dari .
Langkah 1.12.3.1.2
Batalkan faktor persekutuan.
Langkah 1.12.3.1.2.1
Faktorkan dari .
Langkah 1.12.3.1.2.2
Batalkan faktor persekutuan.
Langkah 1.12.3.1.2.3
Tulis kembali pernyataannya.
Langkah 1.12.3.2
Pindahkan tanda negatif di depan pecahan.
Langkah 2
Langkah 2.1
Gunakan gradien dan titik yang diberikan untuk menggantikan dan dalam bentuk titik kemiringan , yang diturunkan dari persamaan gradien .
Langkah 2.2
Sederhanakan persamaannya dan pastikan tetap dalam bentuk titik kemiringan.
Langkah 2.3
Selesaikan .
Langkah 2.3.1
Sederhanakan .
Langkah 2.3.1.1
Tulis kembali.
Langkah 2.3.1.2
Sederhanakan dengan menambahkan nol.
Langkah 2.3.1.3
Terapkan sifat distributif.
Langkah 2.3.1.4
Gabungkan dan .
Langkah 2.3.1.5
Kalikan .
Langkah 2.3.1.5.1
Kalikan dengan .
Langkah 2.3.1.5.2
Gabungkan dan .
Langkah 2.3.1.5.3
Kalikan dengan .
Langkah 2.3.1.6
Pindahkan ke sebelah kiri .
Langkah 2.3.2
Pindahkan semua suku yang tidak mengandung ke sisi kanan dari persamaan.
Langkah 2.3.2.1
Tambahkan ke kedua sisi persamaan.
Langkah 2.3.2.2
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 2.3.2.3
Gabungkan dan .
Langkah 2.3.2.4
Gabungkan pembilang dari penyebut persekutuan.
Langkah 2.3.2.5
Sederhanakan pembilangnya.
Langkah 2.3.2.5.1
Kalikan dengan .
Langkah 2.3.2.5.2
Tambahkan dan .
Langkah 2.3.3
Tulis dalam bentuk .
Langkah 2.3.3.1
Susun kembali suku-suku.
Langkah 2.3.3.2
Hilangkan tanda kurung.
Langkah 3