Masukkan soal...
Kalkulus Contoh
,
Langkah 1
Langkah 1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.2
Evaluasi .
Langkah 1.2.1
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 1.2.2
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana =.
Langkah 1.2.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3
Evaluasi .
Langkah 1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.2
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 1.3.3
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana =.
Langkah 1.3.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.5
Kalikan dengan .
Langkah 1.4
Evaluasi .
Langkah 1.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.4.2
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana =.
Langkah 1.5
Sederhanakan.
Langkah 1.5.1
Terapkan sifat distributif.
Langkah 1.5.2
Gabungkan suku-sukunya.
Langkah 1.5.2.1
Kurangi dengan .
Langkah 1.5.2.1.1
Pindahkan .
Langkah 1.5.2.1.2
Kurangi dengan .
Langkah 1.5.2.2
Tambahkan dan .
Langkah 1.5.2.3
Tambahkan dan .
Langkah 1.5.2.4
Tambahkan dan .
Langkah 1.5.3
Susun kembali faktor-faktor dari .
Langkah 1.5.4
Susun kembali faktor-faktor dalam .
Langkah 1.6
Evaluasi turunan pada .
Langkah 1.7
Sederhanakan.
Langkah 1.7.1
Satu dipangkat berapa pun sama dengan satu.
Langkah 1.7.2
Kalikan dengan .
Langkah 1.7.3
Sederhanakan.
Langkah 2
Langkah 2.1
Gunakan gradien dan titik yang diberikan untuk menggantikan dan dalam bentuk titik kemiringan , yang diturunkan dari persamaan gradien .
Langkah 2.2
Sederhanakan persamaannya dan pastikan tetap dalam bentuk titik kemiringan.
Langkah 2.3
Selesaikan .
Langkah 2.3.1
Sederhanakan .
Langkah 2.3.1.1
Tulis kembali.
Langkah 2.3.1.2
Sederhanakan dengan mengalikan semuanya.
Langkah 2.3.1.2.1
Terapkan sifat distributif.
Langkah 2.3.1.2.2
Pindahkan ke sebelah kiri .
Langkah 2.3.1.3
Tulis kembali sebagai .
Langkah 2.3.2
Pindahkan semua suku yang tidak mengandung ke sisi kanan dari persamaan.
Langkah 2.3.2.1
Tambahkan ke kedua sisi persamaan.
Langkah 2.3.2.2
Gabungkan suku balikan dalam .
Langkah 2.3.2.2.1
Tambahkan dan .
Langkah 2.3.2.2.2
Tambahkan dan .
Langkah 3