Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Uraikan pecahan dan kalikan dengan penyebut persekutuan.
Langkah 1.1.1
Faktorkan pecahannya.
Langkah 1.1.1.1
Faktorkan dari .
Langkah 1.1.1.1.1
Faktorkan dari .
Langkah 1.1.1.1.2
Faktorkan dari .
Langkah 1.1.1.1.3
Naikkan menjadi pangkat .
Langkah 1.1.1.1.4
Faktorkan dari .
Langkah 1.1.1.1.5
Faktorkan dari .
Langkah 1.1.1.1.6
Faktorkan dari .
Langkah 1.1.1.2
Faktorkan menggunakan aturan kuadrat sempurna.
Langkah 1.1.1.2.1
Tulis kembali sebagai .
Langkah 1.1.1.2.2
Periksa apakah suku tengahnya merupakan dua kali hasil perkalian dari bilangan yang dikuadratkan di suku pertama dan suku ketiga.
Langkah 1.1.1.2.3
Tulis kembali polinomialnya.
Langkah 1.1.1.2.4
Faktorkan menggunakan aturan trinomial kuadrat sempurna , di mana dan .
Langkah 1.1.2
Untuk setiap faktor pada penyebut, buat pecahan baru menggunakan faktor sebagai penyebutnya, dan nilai yang tidak diketahui sebagai pembilangnya. karena faktor pada penyebutnya linear, letakkan sebuah variabel di tempat .
Langkah 1.1.3
Untuk setiap faktor pada penyebut, buat pecahan baru menggunakan faktor sebagai penyebutnya, dan nilai yang tidak diketahui sebagai pembilangnya. karena faktor pada penyebutnya linear, letakkan sebuah variabel di tempat .
Langkah 1.1.4
Kalikan setiap pecahan dalam persamaan dengan penyebut dari pernyataan awalnya. Dalam hal ini, penyebutnya adalah .
Langkah 1.1.5
Batalkan faktor persekutuan dari .
Langkah 1.1.5.1
Batalkan faktor persekutuan.
Langkah 1.1.5.2
Tulis kembali pernyataannya.
Langkah 1.1.6
Batalkan faktor persekutuan dari .
Langkah 1.1.6.1
Batalkan faktor persekutuan.
Langkah 1.1.6.2
Bagilah dengan .
Langkah 1.1.7
Sederhanakan setiap suku.
Langkah 1.1.7.1
Batalkan faktor persekutuan dari .
Langkah 1.1.7.1.1
Batalkan faktor persekutuan.
Langkah 1.1.7.1.2
Bagilah dengan .
Langkah 1.1.7.2
Tulis kembali sebagai .
Langkah 1.1.7.3
Perluas menggunakan Metode FOIL.
Langkah 1.1.7.3.1
Terapkan sifat distributif.
Langkah 1.1.7.3.2
Terapkan sifat distributif.
Langkah 1.1.7.3.3
Terapkan sifat distributif.
Langkah 1.1.7.4
Sederhanakan dan gabungkan suku-suku sejenis.
Langkah 1.1.7.4.1
Sederhanakan setiap suku.
Langkah 1.1.7.4.1.1
Kalikan dengan .
Langkah 1.1.7.4.1.2
Pindahkan ke sebelah kiri .
Langkah 1.1.7.4.1.3
Tulis kembali sebagai .
Langkah 1.1.7.4.1.4
Tulis kembali sebagai .
Langkah 1.1.7.4.1.5
Kalikan dengan .
Langkah 1.1.7.4.2
Kurangi dengan .
Langkah 1.1.7.5
Terapkan sifat distributif.
Langkah 1.1.7.6
Sederhanakan.
Langkah 1.1.7.6.1
Tulis kembali menggunakan sifat komutatif dari perkalian.
Langkah 1.1.7.6.2
Kalikan dengan .
Langkah 1.1.7.7
Batalkan faktor persekutuan dari .
Langkah 1.1.7.7.1
Batalkan faktor persekutuan.
Langkah 1.1.7.7.2
Bagilah dengan .
Langkah 1.1.7.8
Hapus faktor persekutuan dari dan .
Langkah 1.1.7.8.1
Faktorkan dari .
Langkah 1.1.7.8.2
Batalkan faktor persekutuan.
Langkah 1.1.7.8.2.1
Kalikan dengan .
Langkah 1.1.7.8.2.2
Batalkan faktor persekutuan.
Langkah 1.1.7.8.2.3
Tulis kembali pernyataannya.
Langkah 1.1.7.8.2.4
Bagilah dengan .
Langkah 1.1.7.9
Terapkan sifat distributif.
Langkah 1.1.7.10
Kalikan dengan .
Langkah 1.1.7.11
Pindahkan ke sebelah kiri .
Langkah 1.1.7.12
Tulis kembali sebagai .
Langkah 1.1.7.13
Terapkan sifat distributif.
Langkah 1.1.7.14
Tulis kembali menggunakan sifat komutatif dari perkalian.
Langkah 1.1.8
Sederhanakan pernyataannya.
Langkah 1.1.8.1
Pindahkan .
Langkah 1.1.8.2
Susun kembali dan .
Langkah 1.1.8.3
Pindahkan .
Langkah 1.1.8.4
Pindahkan .
Langkah 1.1.8.5
Pindahkan .
Langkah 1.2
Buatlah persamaan untuk variabel pecahan parsial dan gunakan untuk membuat sistem persamaan.
Langkah 1.2.1
Buat persamaan dari variabel pecahan parsial dengan menyamakan koefisien dari masing-masing sisi persamaan. Agar persamaannya sama, koefisien setara pada setiap sisi persamaan harus sama.
Langkah 1.2.2
Buat persamaan dari variabel pecahan parsial dengan menyamakan koefisien dari masing-masing sisi persamaan. Agar persamaannya sama, koefisien setara pada setiap sisi persamaan harus sama.
Langkah 1.2.3
Buat persamaan untuk variabel pecahan parsial dengan menyamakan koefisien suku yang tidak memuat . Agar persamaannya sama, koefisien setara pada setiap sisi persamaan harus sama.
Langkah 1.2.4
Buat sistem persamaan untuk menentukan koefisien dari pecahan parsialnya.
Langkah 1.3
Selesaikan sistem persamaan tersebut.
Langkah 1.3.1
Tulis kembali persamaan tersebut sebagai .
Langkah 1.3.2
Substitusikan semua kemunculan dengan dalam masing-masing persamaan.
Langkah 1.3.2.1
Substitusikan semua kemunculan dalam dengan .
Langkah 1.3.2.2
Sederhanakan sisi kanannya.
Langkah 1.3.2.2.1
Hilangkan tanda kurung.
Langkah 1.3.2.3
Substitusikan semua kemunculan dalam dengan .
Langkah 1.3.2.4
Sederhanakan sisi kanannya.
Langkah 1.3.2.4.1
Sederhanakan setiap suku.
Langkah 1.3.2.4.1.1
Kalikan dengan .
Langkah 1.3.2.4.1.2
Tulis kembali sebagai .
Langkah 1.3.3
Selesaikan dalam .
Langkah 1.3.3.1
Tulis kembali persamaan tersebut sebagai .
Langkah 1.3.3.2
Pindahkan semua suku yang tidak mengandung ke sisi kanan dari persamaan.
Langkah 1.3.3.2.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 1.3.3.2.2
Kurangi dengan .
Langkah 1.3.4
Substitusikan semua kemunculan dengan dalam masing-masing persamaan.
Langkah 1.3.4.1
Substitusikan semua kemunculan dalam dengan .
Langkah 1.3.4.2
Sederhanakan sisi kanannya.
Langkah 1.3.4.2.1
Sederhanakan .
Langkah 1.3.4.2.1.1
Kalikan dengan .
Langkah 1.3.4.2.1.2
Tambahkan dan .
Langkah 1.3.5
Selesaikan dalam .
Langkah 1.3.5.1
Tulis kembali persamaan tersebut sebagai .
Langkah 1.3.5.2
Tambahkan ke kedua sisi persamaan.
Langkah 1.3.6
Selesaikan sistem persamaan tersebut.
Langkah 1.3.7
Sebutkan semua penyelesaiannya.
Langkah 1.4
Ganti masing-masing koefisien pecahan parsial dalam dengan nilai-nilai yang didapat dari , , dan .
Langkah 1.5
Pindahkan tanda negatif di depan pecahan.
Langkah 2
Bagi integral tunggal menjadi beberapa integral.
Langkah 3
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 4
Integral dari terhadap adalah .
Langkah 5
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 6
Langkah 6.1
Biarkan . Tentukan .
Langkah 6.1.1
Diferensialkan .
Langkah 6.1.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 6.1.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 6.1.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 6.1.5
Tambahkan dan .
Langkah 6.2
Tulis kembali soalnya menggunakan dan .
Langkah 7
Langkah 7.1
Pindahkan dari penyebut dengan menaikkannya menjadi pangkat .
Langkah 7.2
Kalikan eksponen dalam .
Langkah 7.2.1
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 7.2.2
Kalikan dengan .
Langkah 8
Menurut Kaidah Pangkat, integral dari terhadap adalah .
Langkah 9
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 10
Langkah 10.1
Biarkan . Tentukan .
Langkah 10.1.1
Diferensialkan .
Langkah 10.1.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 10.1.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 10.1.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 10.1.5
Tambahkan dan .
Langkah 10.2
Tulis kembali soalnya menggunakan dan .
Langkah 11
Integral dari terhadap adalah .
Langkah 12
Sederhanakan.
Langkah 13
Langkah 13.1
Ganti semua kemunculan dengan .
Langkah 13.2
Ganti semua kemunculan dengan .