Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 1.1.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 1.1.2
Turunan dari terhadap adalah .
Langkah 1.1.3
Ganti semua kemunculan dengan .
Langkah 1.2
Diferensialkan.
Langkah 1.2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.2.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2.4
Gabungkan pecahan.
Langkah 1.2.4.1
Tambahkan dan .
Langkah 1.2.4.2
Gabungkan dan .
Langkah 1.2.4.3
Gabungkan dan .
Langkah 2
Langkah 2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2
Diferensialkan menggunakan Kaidah Hasil Bagi yang menyatakan bahwa adalah di mana dan .
Langkah 2.3
Diferensialkan.
Langkah 2.3.1
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3.2
Kalikan dengan .
Langkah 2.3.3
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.3.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3.5
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3.6
Sederhanakan pernyataannya.
Langkah 2.3.6.1
Tambahkan dan .
Langkah 2.3.6.2
Kalikan dengan .
Langkah 2.4
Naikkan menjadi pangkat .
Langkah 2.5
Naikkan menjadi pangkat .
Langkah 2.6
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 2.7
Tambahkan dan .
Langkah 2.8
Kurangi dengan .
Langkah 2.9
Gabungkan dan .
Langkah 2.10
Sederhanakan.
Langkah 2.10.1
Terapkan sifat distributif.
Langkah 2.10.2
Sederhanakan setiap suku.
Langkah 2.10.2.1
Kalikan dengan .
Langkah 2.10.2.2
Kalikan dengan .
Langkah 3
Untuk menentukan nilai maksimum dan minimum lokal dari fungsi, atur turunannya agar sama dengan , lalu selesaikan.
Langkah 4
Langkah 4.1
Tentukan turunan pertamanya.
Langkah 4.1.1
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 4.1.1.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 4.1.1.2
Turunan dari terhadap adalah .
Langkah 4.1.1.3
Ganti semua kemunculan dengan .
Langkah 4.1.2
Diferensialkan.
Langkah 4.1.2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 4.1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.1.2.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.1.2.4
Gabungkan pecahan.
Langkah 4.1.2.4.1
Tambahkan dan .
Langkah 4.1.2.4.2
Gabungkan dan .
Langkah 4.1.2.4.3
Gabungkan dan .
Langkah 4.2
Turunan pertama dari terhadap adalah .
Langkah 5
Langkah 5.1
Buat turunan pertamanya agar sama dengan .
Langkah 5.2
Atur agar pembilangnya sama dengan nol.
Langkah 5.3
Bagi setiap suku pada dengan dan sederhanakan.
Langkah 5.3.1
Bagilah setiap suku di dengan .
Langkah 5.3.2
Sederhanakan sisi kirinya.
Langkah 5.3.2.1
Batalkan faktor persekutuan dari .
Langkah 5.3.2.1.1
Batalkan faktor persekutuan.
Langkah 5.3.2.1.2
Bagilah dengan .
Langkah 5.3.3
Sederhanakan sisi kanannya.
Langkah 5.3.3.1
Bagilah dengan .
Langkah 6
Langkah 6.1
Domain dari pernyataan adalah semua bilangan riil, kecuali di mana pernyataannya tidak terdefinisi. Dalam hal ini, tidak ada bilangan riil yang membuat pernyataannya tidak terdefinisi.
Langkah 7
Titik kritis untuk dievaluasi.
Langkah 8
Evaluasi turunan kedua pada . Jika turunan keduanya positif, maka minimum lokal. Jika negatif, maka maksimum lokal.
Langkah 9
Langkah 9.1
Sederhanakan pembilangnya.
Langkah 9.1.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 9.1.2
Kalikan dengan .
Langkah 9.1.3
Tambahkan dan .
Langkah 9.2
Sederhanakan penyebutnya.
Langkah 9.2.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 9.2.2
Tambahkan dan .
Langkah 9.2.3
Satu dipangkat berapa pun sama dengan satu.
Langkah 9.3
Bagilah dengan .
Langkah 10
adalah minimum lokal karena nilai dari turunan keduanya positif. Ini disebut sebagai uji turunan kedua.
adalah minimum lokal
Langkah 11
Langkah 11.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 11.2
Sederhanakan hasilnya.
Langkah 11.2.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 11.2.2
Tambahkan dan .
Langkah 11.2.3
Log alami dari adalah .
Langkah 11.2.4
Jawaban akhirnya adalah .
Langkah 12
Ini adalah ekstrem lokal untuk .
adalah minimum lokal
Langkah 13