Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Tulis kembali sebagai .
Langkah 1.2
Perluas dengan memindahkan ke luar logaritma.
Langkah 2
Langkah 2.1
Pindahkan limit ke dalam eksponen.
Langkah 2.2
Gabungkan dan .
Langkah 3
Langkah 3.1
Evaluasi limit dari pembilang dan limit dari penyebutnya.
Langkah 3.1.1
Ambil limit dari pembilang dan limit dari penyebut.
Langkah 3.1.2
Evaluasi limit dari pembilangnya.
Langkah 3.1.2.1
Evaluasi limitnya.
Langkah 3.1.2.1.1
Pindahkan limit ke dalam logaritma.
Langkah 3.1.2.1.2
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 3.1.2.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 3.1.2.3
Sederhanakan jawabannya.
Langkah 3.1.2.3.1
Batalkan faktor persekutuan dari .
Langkah 3.1.2.3.1.1
Batalkan faktor persekutuan.
Langkah 3.1.2.3.1.2
Tulis kembali pernyataannya.
Langkah 3.1.2.3.2
Log alami dari adalah .
Langkah 3.1.3
Evaluasi limit dari penyebutnya.
Langkah 3.1.3.1
Evaluasi limitnya.
Langkah 3.1.3.1.1
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 3.1.3.1.2
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 3.1.3.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 3.1.3.3
Sederhanakan jawabannya.
Langkah 3.1.3.3.1
Kalikan dengan .
Langkah 3.1.3.3.2
Kurangi dengan .
Langkah 3.1.3.3.3
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 3.1.3.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 3.1.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 3.2
Karena adalah bentuk tak tentu, terapkan Kaidah L'Hospital. Kaidah L'Hospital menyatakan bahwa limit dari hasil bagi fungsi sama dengan limit dari hasil bagi turunannya.
Langkah 3.3
Menentukan turunan dari pembilang dan penyebut.
Langkah 3.3.1
Diferensialkan pembilang dan penyebutnya.
Langkah 3.3.2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 3.3.2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 3.3.2.2
Turunan dari terhadap adalah .
Langkah 3.3.2.3
Ganti semua kemunculan dengan .
Langkah 3.3.3
Kalikan balikan dari pecahan tersebut untuk membagi dengan .
Langkah 3.3.4
Kalikan dengan .
Langkah 3.3.5
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.3.6
Kalikan dengan .
Langkah 3.3.7
Batalkan faktor persekutuan dari .
Langkah 3.3.7.1
Batalkan faktor persekutuan.
Langkah 3.3.7.2
Tulis kembali pernyataannya.
Langkah 3.3.8
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.3.9
Kalikan dengan .
Langkah 3.3.10
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 3.3.11
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.3.12
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.3.13
Tambahkan dan .
Langkah 3.4
Kalikan pembilang dengan balikan dari penyebut.
Langkah 3.5
Kalikan dengan .
Langkah 4
Langkah 4.1
Pisahkan limitnya menggunakan Kaidah Hasil Bagi Limit pada limitnya ketika mendekati .
Langkah 4.2
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 5
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 6
Hasilnya dapat ditampilkan dalam beberapa bentuk.
Bentuk Eksak:
Bentuk Desimal: