Kalkulus Contoh

Tentukan Titik Baliknya f(x) = cube root of x-1
Langkah 1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Gunakan untuk menuliskan kembali sebagai .
Langkah 1.2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 1.2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.2.3
Ganti semua kemunculan dengan .
Langkah 1.3
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 1.4
Gabungkan dan .
Langkah 1.5
Gabungkan pembilang dari penyebut persekutuan.
Langkah 1.6
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.6.1
Kalikan dengan .
Langkah 1.6.2
Kurangi dengan .
Langkah 1.7
Gabungkan pecahan.
Ketuk untuk lebih banyak langkah...
Langkah 1.7.1
Pindahkan tanda negatif di depan pecahan.
Langkah 1.7.2
Gabungkan dan .
Langkah 1.7.3
Pindahkan menjadi penyebut menggunakan aturan eksponen negatif .
Langkah 1.8
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.9
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.10
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.11
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.11.1
Tambahkan dan .
Langkah 1.11.2
Kalikan dengan .
Langkah 2
Atur agar turunan pertamanya bernilai dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Atur agar pembilangnya sama dengan nol.
Langkah 2.2
Karena , tidak ada penyelesaian.
Tidak ada penyelesaian
Tidak ada penyelesaian
Langkah 3
Karena tidak ada nilai yang membuat turunan pertamanya menjadi , maka tidak ada titik balik .
Tidak ada titik balik
Langkah 4