Kalkulus Contoh

Tentukan Antiturunannya (x+3)e^(-2x)
Langkah 1
Tulis sebagai fungsi.
Langkah 2
Fungsi dapat ditemukan dengan mencari integral tak tentu dari turunan .
Langkah 3
Buat integral untuk dipecahkan.
Langkah 4
Integralkan bagian demi bagian menggunakan rumus , di mana dan .
Langkah 5
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 6
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Gabungkan dan .
Langkah 6.2
Kalikan dengan .
Langkah 6.3
Kalikan dengan .
Langkah 7
Biarkan . Kemudian sehingga . Tulis kembali menggunakan dan .
Ketuk untuk lebih banyak langkah...
Langkah 7.1
Biarkan . Tentukan .
Ketuk untuk lebih banyak langkah...
Langkah 7.1.1
Diferensialkan .
Langkah 7.1.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 7.1.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 7.1.4
Kalikan dengan .
Langkah 7.2
Tulis kembali soalnya menggunakan dan .
Langkah 8
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 8.1
Pindahkan tanda negatif di depan pecahan.
Langkah 8.2
Gabungkan dan .
Langkah 9
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 10
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 11
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 11.1
Kalikan dengan .
Langkah 11.2
Kalikan dengan .
Langkah 12
Integral dari terhadap adalah .
Langkah 13
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 13.1
Tulis kembali sebagai .
Langkah 13.2
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 13.2.1
Gabungkan dan .
Langkah 13.2.2
Pindahkan tanda negatif di depan pecahan.
Langkah 14
Ganti semua kemunculan dengan .
Langkah 15
Gabungkan dan .
Langkah 16
Susun kembali suku-suku.
Langkah 17
Jawabannya adalah antiturunan dari fungsi .