Masukkan soal...
Kalkulus Contoh
Langkah 1
Tulis sebagai fungsi.
Langkah 2
Fungsi dapat ditemukan dengan mencari integral tak tentu dari turunan .
Langkah 3
Buat integral untuk dipecahkan.
Langkah 4
Langkah 4.1
Biarkan . Tentukan .
Langkah 4.1.1
Diferensialkan .
Langkah 4.1.2
Diferensialkan.
Langkah 4.1.2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 4.1.2.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.1.3
Evaluasi .
Langkah 4.1.3.1
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 4.1.3.1.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 4.1.3.1.2
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana =.
Langkah 4.1.3.1.3
Ganti semua kemunculan dengan .
Langkah 4.1.3.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.1.3.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.1.3.4
Kalikan dengan .
Langkah 4.1.3.5
Pindahkan ke sebelah kiri .
Langkah 4.1.3.6
Tulis kembali sebagai .
Langkah 4.1.4
Kurangi dengan .
Langkah 4.2
Tulis kembali soalnya menggunakan dan .
Langkah 5
Pisahkan pecahan menjadi beberapa pecahan.
Langkah 6
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 7
Integral dari terhadap adalah .
Langkah 8
Sederhanakan.
Langkah 9
Ganti semua kemunculan dengan .
Langkah 10
Jawabannya adalah antiturunan dari fungsi .