Masukkan soal...
Kalkulus Contoh
Langkah 1
Fungsi dapat ditemukan dengan mencari integral tak tentu dari turunan .
Langkah 2
Buat integral untuk dipecahkan.
Langkah 3
Bagi integral tunggal menjadi beberapa integral.
Langkah 4
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 5
Langkah 5.1
Biarkan . Tentukan .
Langkah 5.1.1
Diferensialkan .
Langkah 5.1.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 5.1.3
Evaluasi .
Langkah 5.1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 5.1.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 5.1.3.3
Kalikan dengan .
Langkah 5.1.4
Diferensialkan menggunakan Aturan Konstanta.
Langkah 5.1.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 5.1.4.2
Tambahkan dan .
Langkah 5.2
Tulis kembali soalnya menggunakan dan .
Langkah 6
Gabungkan dan .
Langkah 7
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 8
Langkah 8.1
Gabungkan dan .
Langkah 8.2
Hapus faktor persekutuan dari dan .
Langkah 8.2.1
Faktorkan dari .
Langkah 8.2.2
Batalkan faktor persekutuan.
Langkah 8.2.2.1
Faktorkan dari .
Langkah 8.2.2.2
Batalkan faktor persekutuan.
Langkah 8.2.2.3
Tulis kembali pernyataannya.
Langkah 9
Integral dari terhadap adalah .
Langkah 10
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 11
Menurut Kaidah Pangkat, integral dari terhadap adalah .
Langkah 12
Langkah 12.1
Sederhanakan.
Langkah 12.2
Sederhanakan.
Langkah 12.2.1
Gabungkan dan .
Langkah 12.2.2
Gabungkan dan .
Langkah 12.2.3
Hapus faktor persekutuan dari dan .
Langkah 12.2.3.1
Faktorkan dari .
Langkah 12.2.3.2
Batalkan faktor persekutuan.
Langkah 12.2.3.2.1
Faktorkan dari .
Langkah 12.2.3.2.2
Batalkan faktor persekutuan.
Langkah 12.2.3.2.3
Tulis kembali pernyataannya.
Langkah 12.2.3.2.4
Bagilah dengan .
Langkah 13
Ganti semua kemunculan dengan .
Langkah 14
Susun kembali suku-suku.
Langkah 15
Jawabannya adalah antiturunan dari fungsi .