Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Diferensialkan.
Langkah 1.1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.1.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2
Evaluasi .
Langkah 1.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.2.3
Kalikan dengan .
Langkah 1.2.4
Kalikan dengan .
Langkah 1.2.5
Gabungkan dan .
Langkah 1.2.6
Pindahkan menjadi penyebut menggunakan aturan eksponen negatif .
Langkah 1.3
Evaluasi .
Langkah 1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.3
Gabungkan dan .
Langkah 1.3.4
Gabungkan dan .
Langkah 1.3.5
Batalkan faktor persekutuan dari .
Langkah 1.3.5.1
Batalkan faktor persekutuan.
Langkah 1.3.5.2
Bagilah dengan .
Langkah 1.4
Evaluasi .
Langkah 1.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.4.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.4.3
Gabungkan dan .
Langkah 1.4.4
Gabungkan dan .
Langkah 1.5
Sederhanakan.
Langkah 1.5.1
Tambahkan dan .
Langkah 1.5.2
Susun kembali suku-suku.
Langkah 2
Langkah 2.1
Diferensialkan.
Langkah 2.1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.1.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2
Evaluasi .
Langkah 2.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2.3
Gabungkan dan .
Langkah 2.2.4
Kalikan dengan .
Langkah 2.2.5
Gabungkan dan .
Langkah 2.2.6
Hapus faktor persekutuan dari dan .
Langkah 2.2.6.1
Faktorkan dari .
Langkah 2.2.6.2
Batalkan faktor persekutuan.
Langkah 2.2.6.2.1
Faktorkan dari .
Langkah 2.2.6.2.2
Batalkan faktor persekutuan.
Langkah 2.2.6.2.3
Tulis kembali pernyataannya.
Langkah 2.2.6.2.4
Bagilah dengan .
Langkah 2.3
Evaluasi .
Langkah 2.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3.2
Tulis kembali sebagai .
Langkah 2.3.3
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 2.3.3.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 2.3.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3.3.3
Ganti semua kemunculan dengan .
Langkah 2.3.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3.5
Kalikan eksponen dalam .
Langkah 2.3.5.1
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 2.3.5.2
Kalikan dengan .
Langkah 2.3.6
Kalikan dengan .
Langkah 2.3.7
Naikkan menjadi pangkat .
Langkah 2.3.8
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 2.3.9
Kurangi dengan .
Langkah 2.3.10
Gabungkan dan .
Langkah 2.3.11
Gabungkan dan .
Langkah 2.3.12
Pindahkan menjadi penyebut menggunakan aturan eksponen negatif .
Langkah 2.3.13
Hapus faktor persekutuan dari dan .
Langkah 2.3.13.1
Faktorkan dari .
Langkah 2.3.13.2
Batalkan faktor persekutuan.
Langkah 2.3.13.2.1
Faktorkan dari .
Langkah 2.3.13.2.2
Batalkan faktor persekutuan.
Langkah 2.3.13.2.3
Tulis kembali pernyataannya.
Langkah 2.3.14
Pindahkan tanda negatif di depan pecahan.
Langkah 3
Langkah 3.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 3.2
Evaluasi .
Langkah 3.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.2.3
Kalikan dengan .
Langkah 3.3
Evaluasi .
Langkah 3.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.3.3
Kalikan dengan .
Langkah 3.4
Evaluasi .
Langkah 3.4.1
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 3.4.2
Tulis kembali sebagai .
Langkah 3.4.3
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 3.4.3.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 3.4.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.4.3.3
Ganti semua kemunculan dengan .
Langkah 3.4.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.4.5
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.4.6
Kalikan eksponen dalam .
Langkah 3.4.6.1
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 3.4.6.2
Kalikan dengan .
Langkah 3.4.7
Kalikan dengan .
Langkah 3.4.8
Kalikan dengan dengan menambahkan eksponennya.
Langkah 3.4.8.1
Pindahkan .
Langkah 3.4.8.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 3.4.8.3
Kurangi dengan .
Langkah 3.4.9
Kalikan dengan .
Langkah 3.4.10
Kalikan dengan .
Langkah 3.4.11
Tambahkan dan .
Langkah 3.5
Sederhanakan.
Langkah 3.5.1
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 3.5.2
Gabungkan dan .
Langkah 3.5.3
Susun kembali suku-suku.
Langkah 4
Turunan ketiga dari terhadap adalah .