Kalkulus Contoh

Tentukan Antiturunannya 3/(x^2+3x)
Langkah 1
Tulis sebagai fungsi.
Langkah 2
Fungsi dapat ditemukan dengan mencari integral tak tentu dari turunan .
Langkah 3
Buat integral untuk dipecahkan.
Langkah 4
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 5
Tulis pecahan menggunakan penguraian pecahan parsial.
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Uraikan pecahan dan kalikan dengan penyebut persekutuan.
Ketuk untuk lebih banyak langkah...
Langkah 5.1.1
Faktorkan dari .
Ketuk untuk lebih banyak langkah...
Langkah 5.1.1.1
Faktorkan dari .
Langkah 5.1.1.2
Faktorkan dari .
Langkah 5.1.1.3
Faktorkan dari .
Langkah 5.1.2
Untuk setiap faktor pada penyebut, buat pecahan baru menggunakan faktor sebagai penyebutnya, dan nilai yang tidak diketahui sebagai pembilangnya. karena faktor pada penyebutnya linear, letakkan sebuah variabel di tempat .
Langkah 5.1.3
Kalikan setiap pecahan dalam persamaan dengan penyebut dari pernyataan awalnya. Dalam hal ini, penyebutnya adalah .
Langkah 5.1.4
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 5.1.4.1
Batalkan faktor persekutuan.
Langkah 5.1.4.2
Tulis kembali pernyataannya.
Langkah 5.1.5
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 5.1.5.1
Batalkan faktor persekutuan.
Langkah 5.1.5.2
Tulis kembali pernyataannya.
Langkah 5.1.6
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 5.1.6.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 5.1.6.1.1
Batalkan faktor persekutuan.
Langkah 5.1.6.1.2
Bagilah dengan .
Langkah 5.1.6.2
Terapkan sifat distributif.
Langkah 5.1.6.3
Pindahkan ke sebelah kiri .
Langkah 5.1.6.4
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 5.1.6.4.1
Batalkan faktor persekutuan.
Langkah 5.1.6.4.2
Bagilah dengan .
Langkah 5.1.7
Pindahkan .
Langkah 5.2
Buatlah persamaan untuk variabel pecahan parsial dan gunakan untuk membuat sistem persamaan.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.1
Buat persamaan dari variabel pecahan parsial dengan menyamakan koefisien dari masing-masing sisi persamaan. Agar persamaannya sama, koefisien setara pada setiap sisi persamaan harus sama.
Langkah 5.2.2
Buat persamaan untuk variabel pecahan parsial dengan menyamakan koefisien suku yang tidak memuat . Agar persamaannya sama, koefisien setara pada setiap sisi persamaan harus sama.
Langkah 5.2.3
Buat sistem persamaan untuk menentukan koefisien dari pecahan parsialnya.
Langkah 5.3
Selesaikan sistem persamaan tersebut.
Ketuk untuk lebih banyak langkah...
Langkah 5.3.1
Selesaikan dalam .
Ketuk untuk lebih banyak langkah...
Langkah 5.3.1.1
Tulis kembali persamaan tersebut sebagai .
Langkah 5.3.1.2
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 5.3.1.2.1
Bagilah setiap suku di dengan .
Langkah 5.3.1.2.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 5.3.1.2.2.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 5.3.1.2.2.1.1
Batalkan faktor persekutuan.
Langkah 5.3.1.2.2.1.2
Bagilah dengan .
Langkah 5.3.2
Substitusikan semua kemunculan dengan dalam masing-masing persamaan.
Ketuk untuk lebih banyak langkah...
Langkah 5.3.2.1
Substitusikan semua kemunculan dalam dengan .
Langkah 5.3.2.2
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 5.3.2.2.1
Hilangkan tanda kurung.
Langkah 5.3.3
Selesaikan dalam .
Ketuk untuk lebih banyak langkah...
Langkah 5.3.3.1
Tulis kembali persamaan tersebut sebagai .
Langkah 5.3.3.2
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 5.3.4
Selesaikan sistem persamaan tersebut.
Langkah 5.3.5
Sebutkan semua penyelesaiannya.
Langkah 5.4
Ganti masing-masing koefisien pecahan parsial dalam dengan nilai-nilai yang didapat dari dan .
Langkah 5.5
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 5.5.1
Kalikan pembilang dengan balikan dari penyebut.
Langkah 5.5.2
Kalikan dengan .
Langkah 5.5.3
Kalikan pembilang dengan balikan dari penyebut.
Langkah 5.5.4
Kalikan dengan .
Langkah 5.5.5
Pindahkan ke sebelah kiri .
Langkah 6
Bagi integral tunggal menjadi beberapa integral.
Langkah 7
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 8
Integral dari terhadap adalah .
Langkah 9
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 10
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 11
Biarkan . Kemudian . Tulis kembali menggunakan dan .
Ketuk untuk lebih banyak langkah...
Langkah 11.1
Biarkan . Tentukan .
Ketuk untuk lebih banyak langkah...
Langkah 11.1.1
Diferensialkan .
Langkah 11.1.2
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 11.1.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 11.1.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 11.1.5
Tambahkan dan .
Langkah 11.2
Tulis kembali soalnya menggunakan dan .
Langkah 12
Integral dari terhadap adalah .
Langkah 13
Sederhanakan.
Langkah 14
Ganti semua kemunculan dengan .
Langkah 15
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 15.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 15.1.1
Gabungkan dan .
Langkah 15.1.2
Gabungkan dan .
Langkah 15.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 15.3
Gunakan sifat hasil bagi dari logaritma, .
Langkah 15.4
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 15.4.1
Batalkan faktor persekutuan.
Langkah 15.4.2
Tulis kembali pernyataannya.
Langkah 16
Jawabannya adalah antiturunan dari fungsi .