Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Evaluasi limit dari pembilang dan limit dari penyebutnya.
Langkah 1.1.1
Ambil limit dari pembilang dan limit dari penyebut.
Langkah 1.1.2
Evaluasi limit dari pembilangnya.
Langkah 1.1.2.1
Evaluasi limitnya.
Langkah 1.1.2.1.1
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 1.1.2.1.2
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 1.1.2.1.3
Pindahkan batas di dalam fungsi trigonometri karena sekan kontinu.
Langkah 1.1.2.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.1.2.3
Sederhanakan jawabannya.
Langkah 1.1.2.3.1
Sederhanakan setiap suku.
Langkah 1.1.2.3.1.1
Nilai eksak dari adalah .
Langkah 1.1.2.3.1.2
Kalikan dengan .
Langkah 1.1.2.3.2
Kurangi dengan .
Langkah 1.1.3
Evaluasi limit dari penyebutnya.
Langkah 1.1.3.1
Evaluasi limitnya.
Langkah 1.1.3.1.1
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 1.1.3.1.2
Pindahkan batas di dalam fungsi trigonometri karena kosinus kontinu.
Langkah 1.1.3.1.3
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 1.1.3.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.1.3.3
Sederhanakan jawabannya.
Langkah 1.1.3.3.1
Sederhanakan setiap suku.
Langkah 1.1.3.3.1.1
Nilai eksak dari adalah .
Langkah 1.1.3.3.1.2
Kalikan dengan .
Langkah 1.1.3.3.2
Kurangi dengan .
Langkah 1.1.3.3.3
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.1.3.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.1.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.2
Karena adalah bentuk tak tentu, terapkan Kaidah L'Hospital. Kaidah L'Hospital menyatakan bahwa limit dari hasil bagi fungsi sama dengan limit dari hasil bagi turunannya.
Langkah 1.3
Menentukan turunan dari pembilang dan penyebut.
Langkah 1.3.1
Diferensialkan pembilang dan penyebutnya.
Langkah 1.3.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.3.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.4
Evaluasi .
Langkah 1.3.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.4.2
Turunan dari terhadap adalah .
Langkah 1.3.5
Kurangi dengan .
Langkah 1.3.6
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.3.7
Turunan dari terhadap adalah .
Langkah 1.3.8
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.9
Tambahkan dan .
Langkah 1.4
Membagi dua nilai negatif menghasilkan nilai positif.
Langkah 2
Langkah 2.1
Evaluasi limit dari pembilang dan limit dari penyebutnya.
Langkah 2.1.1
Ambil limit dari pembilang dan limit dari penyebut.
Langkah 2.1.2
Evaluasi limit dari pembilangnya.
Langkah 2.1.2.1
Pisahkan limitnya menggunakan Kaidah Hasil Kali Limit pada limit ketika mendekati .
Langkah 2.1.2.2
Pindahkan batas di dalam fungsi trigonometri karena sekan kontinu.
Langkah 2.1.2.3
Pindahkan batas di dalam fungsi trigonometri karena tangen kontinu.
Langkah 2.1.2.4
Evaluasi limit-limit dengan memasukkan ke semua munculnya (Variabel1).
Langkah 2.1.2.4.1
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 2.1.2.4.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 2.1.2.5
Sederhanakan jawabannya.
Langkah 2.1.2.5.1
Nilai eksak dari adalah .
Langkah 2.1.2.5.2
Kalikan dengan .
Langkah 2.1.2.5.3
Nilai eksak dari adalah .
Langkah 2.1.3
Evaluasi limit dari penyebutnya.
Langkah 2.1.3.1
Pindahkan batas di dalam fungsi trigonometri karena sinus kontinu.
Langkah 2.1.3.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 2.1.3.3
Nilai eksak dari adalah .
Langkah 2.1.3.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 2.1.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 2.2
Karena adalah bentuk tak tentu, terapkan Kaidah L'Hospital. Kaidah L'Hospital menyatakan bahwa limit dari hasil bagi fungsi sama dengan limit dari hasil bagi turunannya.
Langkah 2.3
Menentukan turunan dari pembilang dan penyebut.
Langkah 2.3.1
Diferensialkan pembilang dan penyebutnya.
Langkah 2.3.2
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 2.3.3
Turunan dari terhadap adalah .
Langkah 2.3.4
Kalikan dengan dengan menambahkan eksponennya.
Langkah 2.3.4.1
Kalikan dengan .
Langkah 2.3.4.1.1
Naikkan menjadi pangkat .
Langkah 2.3.4.1.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 2.3.4.2
Tambahkan dan .
Langkah 2.3.5
Turunan dari terhadap adalah .
Langkah 2.3.6
Naikkan menjadi pangkat .
Langkah 2.3.7
Naikkan menjadi pangkat .
Langkah 2.3.8
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 2.3.9
Tambahkan dan .
Langkah 2.3.10
Susun kembali suku-suku.
Langkah 2.3.11
Turunan dari terhadap adalah .
Langkah 3
Langkah 3.1
Pisahkan limitnya menggunakan Kaidah Hasil Bagi Limit pada limitnya ketika mendekati .
Langkah 3.2
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 3.3
Pisahkan limitnya menggunakan Kaidah Hasil Kali Limit pada limit ketika mendekati .
Langkah 3.4
Pindahkan pangkat dari di luar limit menggunakan Kaidah Pangkat Limit.
Langkah 3.5
Pindahkan batas di dalam fungsi trigonometri karena tangen kontinu.
Langkah 3.6
Pindahkan batas di dalam fungsi trigonometri karena sekan kontinu.
Langkah 3.7
Pindahkan pangkat dari di luar limit menggunakan Kaidah Pangkat Limit.
Langkah 3.8
Pindahkan batas di dalam fungsi trigonometri karena sekan kontinu.
Langkah 3.9
Pindahkan batas di dalam fungsi trigonometri karena kosinus kontinu.
Langkah 4
Langkah 4.1
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 4.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 4.3
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 4.4
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 5
Langkah 5.1
Sederhanakan pembilangnya.
Langkah 5.1.1
Nilai eksak dari adalah .
Langkah 5.1.2
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 5.1.3
Nilai eksak dari adalah .
Langkah 5.1.4
Kalikan dengan .
Langkah 5.1.5
Nilai eksak dari adalah .
Langkah 5.1.6
Satu dipangkat berapa pun sama dengan satu.
Langkah 5.1.7
Tambahkan dan .
Langkah 5.2
Nilai eksak dari adalah .
Langkah 5.3
Batalkan faktor persekutuan dari .
Langkah 5.3.1
Batalkan faktor persekutuan.
Langkah 5.3.2
Tulis kembali pernyataannya.