Kalkulus Contoh

Evaluasi Menggunakan Aturan L''Hospital limit ketika x mendekati 0 dari (4x^2)/(e^(4x)-4x-1)
Langkah 1
Evaluasi limit dari pembilang dan limit dari penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Ambil limit dari pembilang dan limit dari penyebut.
Langkah 1.2
Evaluasi limit dari pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.1
Evaluasi limitnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.1.1
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 1.2.1.2
Pindahkan pangkat dari di luar limit menggunakan Kaidah Pangkat Limit.
Langkah 1.2.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.2.3
Sederhanakan jawabannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.3.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 1.2.3.2
Kalikan dengan .
Langkah 1.3
Evaluasi limit dari penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.1
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 1.3.2
Pindahkan limit ke dalam eksponen.
Langkah 1.3.3
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 1.3.4
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 1.3.5
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 1.3.6
Evaluasi limit-limit dengan memasukkan ke semua munculnya (Variabel1).
Ketuk untuk lebih banyak langkah...
Langkah 1.3.6.1
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.3.6.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.3.7
Sederhanakan jawabannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.7.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.7.1.1
Kalikan dengan .
Langkah 1.3.7.1.2
Apa pun yang dinaikkan ke adalah .
Langkah 1.3.7.1.3
Kalikan dengan .
Langkah 1.3.7.1.4
Kalikan dengan .
Langkah 1.3.7.2
Tambahkan dan .
Langkah 1.3.7.3
Kurangi dengan .
Langkah 1.3.7.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.3.8
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 2
Karena adalah bentuk tak tentu, terapkan Kaidah L'Hospital. Kaidah L'Hospital menyatakan bahwa limit dari hasil bagi fungsi sama dengan limit dari hasil bagi turunannya.
Langkah 3
Menentukan turunan dari pembilang dan penyebut.
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Diferensialkan pembilang dan penyebutnya.
Langkah 3.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.4
Kalikan dengan .
Langkah 3.5
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 3.6
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 3.6.1
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 3.6.1.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 3.6.1.2
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana =.
Langkah 3.6.1.3
Ganti semua kemunculan dengan .
Langkah 3.6.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.6.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.6.4
Kalikan dengan .
Langkah 3.6.5
Pindahkan ke sebelah kiri .
Langkah 3.7
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 3.7.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.7.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.7.3
Kalikan dengan .
Langkah 3.8
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.9
Tambahkan dan .
Langkah 4
Evaluasi limitnya.
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Hapus faktor persekutuan dari dan .
Ketuk untuk lebih banyak langkah...
Langkah 4.1.1
Faktorkan dari .
Langkah 4.1.2
Batalkan faktor persekutuan.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.2.1
Faktorkan dari .
Langkah 4.1.2.2
Faktorkan dari .
Langkah 4.1.2.3
Faktorkan dari .
Langkah 4.1.2.4
Batalkan faktor persekutuan.
Langkah 4.1.2.5
Tulis kembali pernyataannya.
Langkah 4.2
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 5
Terapkan aturan L'Hospital.
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Evaluasi limit dari pembilang dan limit dari penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 5.1.1
Ambil limit dari pembilang dan limit dari penyebut.
Langkah 5.1.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 5.1.3
Evaluasi limit dari penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 5.1.3.1
Evaluasi limitnya.
Ketuk untuk lebih banyak langkah...
Langkah 5.1.3.1.1
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 5.1.3.1.2
Pindahkan limit ke dalam eksponen.
Langkah 5.1.3.1.3
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 5.1.3.1.4
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 5.1.3.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 5.1.3.3
Sederhanakan jawabannya.
Ketuk untuk lebih banyak langkah...
Langkah 5.1.3.3.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 5.1.3.3.1.1
Kalikan dengan .
Langkah 5.1.3.3.1.2
Apa pun yang dinaikkan ke adalah .
Langkah 5.1.3.3.1.3
Kalikan dengan .
Langkah 5.1.3.3.2
Kurangi dengan .
Langkah 5.1.3.3.3
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 5.1.3.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 5.1.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 5.2
Karena adalah bentuk tak tentu, terapkan Kaidah L'Hospital. Kaidah L'Hospital menyatakan bahwa limit dari hasil bagi fungsi sama dengan limit dari hasil bagi turunannya.
Langkah 5.3
Menentukan turunan dari pembilang dan penyebut.
Ketuk untuk lebih banyak langkah...
Langkah 5.3.1
Diferensialkan pembilang dan penyebutnya.
Langkah 5.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 5.3.3
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 5.3.4
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 5.3.4.1
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 5.3.4.1.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 5.3.4.1.2
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana =.
Langkah 5.3.4.1.3
Ganti semua kemunculan dengan .
Langkah 5.3.4.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 5.3.4.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 5.3.4.4
Kalikan dengan .
Langkah 5.3.4.5
Pindahkan ke sebelah kiri .
Langkah 5.3.5
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 5.3.6
Tambahkan dan .
Langkah 6
Evaluasi limitnya.
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 6.2
Pisahkan limitnya menggunakan Kaidah Hasil Bagi Limit pada limitnya ketika mendekati .
Langkah 6.3
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 6.4
Pindahkan limit ke dalam eksponen.
Langkah 6.5
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 7
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 8
Sederhanakan jawabannya.
Ketuk untuk lebih banyak langkah...
Langkah 8.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 8.1.1
Faktorkan dari .
Langkah 8.1.2
Batalkan faktor persekutuan.
Langkah 8.1.3
Tulis kembali pernyataannya.
Langkah 8.2
Gabungkan.
Langkah 8.3
Kalikan dengan .
Langkah 8.4
Sederhanakan penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 8.4.1
Kalikan dengan .
Langkah 8.4.2
Apa pun yang dinaikkan ke adalah .
Langkah 8.5
Kalikan dengan .