Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Ambil limit dari pembilang dan limit dari penyebut.
Langkah 1.2
Evaluasi limit dari pembilangnya.
Langkah 1.2.1
Evaluasi limitnya.
Langkah 1.2.1.1
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 1.2.1.2
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 1.2.1.3
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 1.2.1.4
Pindahkan pangkat dari di luar limit menggunakan Kaidah Pangkat Limit.
Langkah 1.2.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.2.3
Sederhanakan jawabannya.
Langkah 1.2.3.1
Sederhanakan setiap suku.
Langkah 1.2.3.1.1
Satu dipangkat berapa pun sama dengan satu.
Langkah 1.2.3.1.2
Kalikan dengan .
Langkah 1.2.3.2
Kurangi dengan .
Langkah 1.3
Evaluasi limit dari penyebutnya.
Langkah 1.3.1
Evaluasi limitnya.
Langkah 1.3.1.1
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 1.3.1.2
Pindahkan batas di dalam fungsi trigonometri karena tangen kontinu.
Langkah 1.3.1.3
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 1.3.1.4
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 1.3.1.5
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 1.3.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.3.3
Sederhanakan jawabannya.
Langkah 1.3.3.1
Sederhanakan setiap suku.
Langkah 1.3.3.1.1
Kalikan dengan .
Langkah 1.3.3.1.2
Kalikan dengan .
Langkah 1.3.3.2
Kurangi dengan .
Langkah 1.3.3.3
Nilai eksak dari adalah .
Langkah 1.3.3.4
Kalikan dengan .
Langkah 1.3.3.5
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.3.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 2
Karena adalah bentuk tak tentu, terapkan Kaidah L'Hospital. Kaidah L'Hospital menyatakan bahwa limit dari hasil bagi fungsi sama dengan limit dari hasil bagi turunannya.
Langkah 3
Langkah 3.1
Diferensialkan pembilang dan penyebutnya.
Langkah 3.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 3.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.4
Evaluasi .
Langkah 3.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.4.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.4.3
Kalikan dengan .
Langkah 3.5
Kurangi dengan .
Langkah 3.6
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.7
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 3.7.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 3.7.2
Turunan dari terhadap adalah .
Langkah 3.7.3
Ganti semua kemunculan dengan .
Langkah 3.8
Hilangkan tanda kurung.
Langkah 3.9
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 3.10
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.11
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.12
Kalikan dengan .
Langkah 3.13
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.14
Tambahkan dan .
Langkah 3.15
Kalikan dengan .
Langkah 4
Langkah 4.1
Faktorkan dari .
Langkah 4.2
Batalkan faktor persekutuan.
Langkah 4.2.1
Faktorkan dari .
Langkah 4.2.2
Batalkan faktor persekutuan.
Langkah 4.2.3
Tulis kembali pernyataannya.
Langkah 5
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 6
Pisahkan limitnya menggunakan Kaidah Hasil Bagi Limit pada limitnya ketika mendekati .
Langkah 7
Pindahkan pangkat dari di luar limit menggunakan Kaidah Pangkat Limit.
Langkah 8
Pindahkan batas di dalam fungsi trigonometri karena sekan kontinu.
Langkah 9
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 10
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 11
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 12
Langkah 12.1
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 12.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 13
Langkah 13.1
Gabungkan.
Langkah 13.2
Kalikan dengan .
Langkah 13.3
Sederhanakan penyebutnya.
Langkah 13.3.1
Sederhanakan setiap suku.
Langkah 13.3.1.1
Kalikan dengan .
Langkah 13.3.1.2
Kalikan dengan .
Langkah 13.3.2
Kurangi dengan .
Langkah 13.3.3
Nilai eksak dari adalah .
Langkah 13.3.4
Satu dipangkat berapa pun sama dengan satu.
Langkah 13.4
Kalikan dengan .
Langkah 13.5
Pindahkan tanda negatif di depan pecahan.