Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Biarkan . Tentukan .
Langkah 1.1.1
Diferensialkan .
Langkah 1.1.2
Diferensialkan.
Langkah 1.1.2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.1.2.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.3
Turunan dari terhadap adalah .
Langkah 1.1.4
Kurangi dengan .
Langkah 1.2
Substitusikan batas bawah untuk di .
Langkah 1.3
Sederhanakan.
Langkah 1.3.1
Nilai eksak dari adalah .
Langkah 1.3.2
Tambahkan dan .
Langkah 1.4
Substitusikan batas atas untuk di .
Langkah 1.5
Sederhanakan.
Langkah 1.5.1
Sederhanakan setiap suku.
Langkah 1.5.1.1
Terapkan sudut acuan dengan mencari sudut dengan nilai-nilai-trigonometri yang setara di kuadran pertama. Buat pernyataannya negatif karena kosinus negatif di kuadran kedua.
Langkah 1.5.1.2
Nilai eksak dari adalah .
Langkah 1.5.1.3
Kalikan dengan .
Langkah 1.5.2
Kurangi dengan .
Langkah 1.6
Nilai-nilai yang ditemukan untuk dan akan digunakan untuk mengevaluasi integral tentunya.
Langkah 1.7
Tulis kembali soalnya menggunakan , , dan batas integral yang baru.
Langkah 2
Pisahkan pecahan menjadi beberapa pecahan.
Langkah 3
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 4
Integral dari terhadap adalah .
Langkah 5
Evaluasi pada dan pada .
Langkah 6
Gunakan sifat hasil bagi dari logaritma, .
Langkah 7
Langkah 7.1
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 7.2
Nilai mutlak adalah jarak antara sebuah bilangan dan nol. Jarak antara dan adalah .
Langkah 7.3
Bagilah dengan .
Langkah 7.4
Log alami dari nol tidak terdefinisi.
Tidak terdefinisi
Langkah 8
Log alami dari nol tidak terdefinisi.
Tidak terdefinisi