Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 1.1.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 1.1.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.3
Ganti semua kemunculan dengan .
Langkah 1.2
Turunan dari terhadap adalah .
Langkah 1.3
Sederhanakan.
Langkah 1.3.1
Susun kembali faktor-faktor dari .
Langkah 1.3.2
Susun kembali dan .
Langkah 1.3.3
Susun kembali dan .
Langkah 1.3.4
Terapkan identitas sudut ganda sinus.
Langkah 2
Langkah 2.1
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 2.1.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 2.1.2
Turunan dari terhadap adalah .
Langkah 2.1.3
Ganti semua kemunculan dengan .
Langkah 2.2
Diferensialkan.
Langkah 2.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2.3
Sederhanakan pernyataannya.
Langkah 2.2.3.1
Kalikan dengan .
Langkah 2.2.3.2
Pindahkan ke sebelah kiri .
Langkah 3
Untuk menentukan nilai maksimum dan minimum lokal dari fungsi, atur turunannya agar sama dengan , lalu selesaikan.
Langkah 4
Ambil sinus balikan dari kedua sisi persamaan untuk mendapatkan dari dalam sinus.
Langkah 5
Langkah 5.1
Nilai eksak dari adalah .
Langkah 6
Langkah 6.1
Bagilah setiap suku di dengan .
Langkah 6.2
Sederhanakan sisi kirinya.
Langkah 6.2.1
Batalkan faktor persekutuan dari .
Langkah 6.2.1.1
Batalkan faktor persekutuan.
Langkah 6.2.1.2
Bagilah dengan .
Langkah 6.3
Sederhanakan sisi kanannya.
Langkah 6.3.1
Bagilah dengan .
Langkah 7
Fungsi sinus positif di kuadran pertama dan kedua. Untuk menemukan penyelesaian kedua, kurangi sudut acuan dari untuk menemukan penyelesaian di kuadran kedua.
Langkah 8
Langkah 8.1
Sederhanakan.
Langkah 8.1.1
Kalikan dengan .
Langkah 8.1.2
Tambahkan dan .
Langkah 8.2
Bagi setiap suku pada dengan dan sederhanakan.
Langkah 8.2.1
Bagilah setiap suku di dengan .
Langkah 8.2.2
Sederhanakan sisi kirinya.
Langkah 8.2.2.1
Batalkan faktor persekutuan dari .
Langkah 8.2.2.1.1
Batalkan faktor persekutuan.
Langkah 8.2.2.1.2
Bagilah dengan .
Langkah 9
Penyelesaian untuk persamaan .
Langkah 10
Evaluasi turunan kedua pada . Jika turunan keduanya positif, maka minimum lokal. Jika negatif, maka maksimum lokal.
Langkah 11
Langkah 11.1
Kalikan dengan .
Langkah 11.2
Nilai eksak dari adalah .
Langkah 11.3
Kalikan dengan .
Langkah 12
adalah minimum lokal karena nilai dari turunan keduanya positif. Ini disebut sebagai uji turunan kedua.
adalah minimum lokal
Langkah 13
Langkah 13.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 13.2
Sederhanakan hasilnya.
Langkah 13.2.1
Nilai eksak dari adalah .
Langkah 13.2.2
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 13.2.3
Jawaban akhirnya adalah .
Langkah 14
Evaluasi turunan kedua pada . Jika turunan keduanya positif, maka minimum lokal. Jika negatif, maka maksimum lokal.
Langkah 15
Langkah 15.1
Batalkan faktor persekutuan dari .
Langkah 15.1.1
Batalkan faktor persekutuan.
Langkah 15.1.2
Tulis kembali pernyataannya.
Langkah 15.2
Terapkan sudut acuan dengan mencari sudut dengan nilai-nilai-trigonometri yang setara di kuadran pertama. Buat pernyataannya negatif karena kosinus negatif di kuadran kedua.
Langkah 15.3
Nilai eksak dari adalah .
Langkah 15.4
Kalikan .
Langkah 15.4.1
Kalikan dengan .
Langkah 15.4.2
Kalikan dengan .
Langkah 16
adalah maksimum lokal karena nilai dari turunan keduanya negatif. Ini disebut sebagai uji turunan kedua.
adalah maksimum lokal
Langkah 17
Langkah 17.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 17.2
Sederhanakan hasilnya.
Langkah 17.2.1
Nilai eksak dari adalah .
Langkah 17.2.2
Satu dipangkat berapa pun sama dengan satu.
Langkah 17.2.3
Jawaban akhirnya adalah .
Langkah 18
Ini adalah ekstrem lokal untuk .
adalah minimum lokal
adalah maksimum lokal
Langkah 19