Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 1.1.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 1.1.2
Turunan dari terhadap adalah .
Langkah 1.1.3
Ganti semua kemunculan dengan .
Langkah 1.2
Diferensialkan.
Langkah 1.2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.2.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2.4
Gabungkan pecahan.
Langkah 1.2.4.1
Tambahkan dan .
Langkah 1.2.4.2
Gabungkan dan .
Langkah 1.2.4.3
Gabungkan dan .
Langkah 2
Langkah 2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2
Diferensialkan menggunakan Kaidah Hasil Bagi yang menyatakan bahwa adalah di mana dan .
Langkah 2.3
Diferensialkan.
Langkah 2.3.1
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3.2
Kalikan dengan .
Langkah 2.3.3
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.3.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3.5
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3.6
Sederhanakan pernyataannya.
Langkah 2.3.6.1
Tambahkan dan .
Langkah 2.3.6.2
Kalikan dengan .
Langkah 2.4
Naikkan menjadi pangkat .
Langkah 2.5
Naikkan menjadi pangkat .
Langkah 2.6
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 2.7
Tambahkan dan .
Langkah 2.8
Kurangi dengan .
Langkah 2.9
Gabungkan dan .
Langkah 2.10
Sederhanakan.
Langkah 2.10.1
Terapkan sifat distributif.
Langkah 2.10.2
Sederhanakan setiap suku.
Langkah 2.10.2.1
Kalikan dengan .
Langkah 2.10.2.2
Kalikan dengan .
Langkah 3
Untuk menentukan nilai maksimum dan minimum lokal dari fungsi, atur turunannya agar sama dengan , lalu selesaikan.
Langkah 4
Karena tidak ada nilai dari yang membuat turunan pertama sama dengan , maka tidak ada ekstrem lokal.
Tidak Ada Ekstrem Lokal
Langkah 5
Tidak Ada Ekstrem Lokal
Langkah 6