Masukkan soal...
Kalkulus Contoh
Let
Langkah 1
Langkah 1.1
Tentukan turunan pertamanya.
Langkah 1.1.1
Diferensialkan menggunakan Kaidah Hasil Bagi yang menyatakan bahwa adalah di mana dan .
Langkah 1.1.2
Diferensialkan.
Langkah 1.1.2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.2.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.2.4
Sederhanakan pernyataannya.
Langkah 1.1.2.4.1
Tambahkan dan .
Langkah 1.1.2.4.2
Kalikan dengan .
Langkah 1.1.2.5
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.1.2.6
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.2.7
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.2.8
Sederhanakan pernyataannya.
Langkah 1.1.2.8.1
Tambahkan dan .
Langkah 1.1.2.8.2
Kalikan dengan .
Langkah 1.1.3
Sederhanakan.
Langkah 1.1.3.1
Terapkan sifat distributif.
Langkah 1.1.3.2
Sederhanakan pembilangnya.
Langkah 1.1.3.2.1
Gabungkan suku balikan dalam .
Langkah 1.1.3.2.1.1
Kurangi dengan .
Langkah 1.1.3.2.1.2
Kurangi dengan .
Langkah 1.1.3.2.2
Kalikan dengan .
Langkah 1.1.3.2.3
Kurangi dengan .
Langkah 1.1.3.3
Pindahkan tanda negatif di depan pecahan.
Langkah 1.2
Turunan pertama dari terhadap adalah .
Langkah 2
Langkah 2.1
Buat turunan pertamanya agar sama dengan .
Langkah 2.2
Atur agar pembilangnya sama dengan nol.
Langkah 2.3
Karena , tidak ada penyelesaian.
Tidak ada penyelesaian
Tidak ada penyelesaian
Langkah 3
Langkah 3.1
Atur penyebut dalam agar sama dengan untuk menentukan di mana pernyataannya tidak terdefinisi.
Langkah 3.2
Selesaikan .
Langkah 3.2.1
Atur agar sama dengan .
Langkah 3.2.2
Tambahkan ke kedua sisi persamaan.
Langkah 4
Langkah 4.1
Evaluasi pada .
Langkah 4.1.1
Substitusikan untuk .
Langkah 4.1.2
Sederhanakan.
Langkah 4.1.2.1
Kurangi dengan .
Langkah 4.1.2.2
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Tidak terdefinisi
Tidak terdefinisi
Tidak terdefinisi
Langkah 5
Tidak ada nilai dari di domain soal awal yang nilai-turunannya adalah atau tidak terdefinisi.
Tidak ditemukan titik kritis