Masukkan soal...
Kalkulus Contoh
Langkah 1
Tulis sebagai fungsi.
Langkah 2
Fungsi dapat ditemukan dengan mencari integral tak tentu dari turunan .
Langkah 3
Buat integral untuk dipecahkan.
Langkah 4
Langkah 4.1
Biarkan . Tentukan .
Langkah 4.1.1
Diferensialkan .
Langkah 4.1.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.1.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.1.4
Kalikan dengan .
Langkah 4.2
Tulis kembali soalnya menggunakan dan .
Langkah 5
Gabungkan dan .
Langkah 6
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 7
Menggunakan Identitas Pythagoras, tulis kembali sebagai .
Langkah 8
Bagi integral tunggal menjadi beberapa integral.
Langkah 9
Terapkan aturan konstanta.
Langkah 10
Karena turunan dari adalah , maka integral dari adalah .
Langkah 11
Sederhanakan.
Langkah 12
Ganti semua kemunculan dengan .
Langkah 13
Langkah 13.1
Kalikan dengan .
Langkah 13.2
Terapkan sifat distributif.
Langkah 13.3
Batalkan faktor persekutuan dari .
Langkah 13.3.1
Faktorkan dari .
Langkah 13.3.2
Batalkan faktor persekutuan.
Langkah 13.3.3
Tulis kembali pernyataannya.
Langkah 13.4
Gabungkan dan .
Langkah 14
Susun kembali suku-suku.
Langkah 15
Jawabannya adalah antiturunan dari fungsi .