Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Evaluasi limit dari pembilang dan limit dari penyebutnya.
Langkah 1.1.1
Ambil limit dari pembilang dan limit dari penyebut.
Langkah 1.1.2
Evaluasi limit dari pembilangnya.
Langkah 1.1.2.1
Evaluasi limitnya.
Langkah 1.1.2.1.1
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 1.1.2.1.2
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 1.1.2.1.3
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 1.1.2.1.4
Pindahkan pangkat dari di luar limit menggunakan Kaidah Pangkat Limit.
Langkah 1.1.2.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.1.2.3
Sederhanakan jawabannya.
Langkah 1.1.2.3.1
Sederhanakan setiap suku.
Langkah 1.1.2.3.1.1
Terapkan kaidah hasil kali ke .
Langkah 1.1.2.3.1.2
Naikkan menjadi pangkat .
Langkah 1.1.2.3.1.3
Naikkan menjadi pangkat .
Langkah 1.1.2.3.1.4
Batalkan faktor persekutuan dari .
Langkah 1.1.2.3.1.4.1
Faktorkan dari .
Langkah 1.1.2.3.1.4.2
Batalkan faktor persekutuan.
Langkah 1.1.2.3.1.4.3
Tulis kembali pernyataannya.
Langkah 1.1.2.3.1.5
Kalikan dengan .
Langkah 1.1.2.3.2
Kurangi dengan .
Langkah 1.1.3
Evaluasi limit dari penyebutnya.
Langkah 1.1.3.1
Evaluasi limitnya.
Langkah 1.1.3.1.1
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 1.1.3.1.2
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 1.1.3.1.3
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 1.1.3.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.1.3.3
Sederhanakan jawabannya.
Langkah 1.1.3.3.1
Sederhanakan setiap suku.
Langkah 1.1.3.3.1.1
Batalkan faktor persekutuan dari .
Langkah 1.1.3.3.1.1.1
Faktorkan dari .
Langkah 1.1.3.3.1.1.2
Batalkan faktor persekutuan.
Langkah 1.1.3.3.1.1.3
Tulis kembali pernyataannya.
Langkah 1.1.3.3.1.2
Kalikan dengan .
Langkah 1.1.3.3.2
Kurangi dengan .
Langkah 1.1.3.3.3
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.1.3.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.1.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.2
Karena adalah bentuk tak tentu, terapkan Kaidah L'Hospital. Kaidah L'Hospital menyatakan bahwa limit dari hasil bagi fungsi sama dengan limit dari hasil bagi turunannya.
Langkah 1.3
Menentukan turunan dari pembilang dan penyebut.
Langkah 1.3.1
Diferensialkan pembilang dan penyebutnya.
Langkah 1.3.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.3.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.4
Evaluasi .
Langkah 1.3.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.4.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.4.3
Kalikan dengan .
Langkah 1.3.5
Kurangi dengan .
Langkah 1.3.6
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.3.7
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.8
Evaluasi .
Langkah 1.3.8.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.8.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.8.3
Kalikan dengan .
Langkah 1.3.9
Kurangi dengan .
Langkah 1.4
Hapus faktor persekutuan dari dan .
Langkah 1.4.1
Faktorkan dari .
Langkah 1.4.2
Batalkan faktor persekutuan.
Langkah 1.4.2.1
Faktorkan dari .
Langkah 1.4.2.2
Batalkan faktor persekutuan.
Langkah 1.4.2.3
Tulis kembali pernyataannya.
Langkah 1.4.2.4
Bagilah dengan .
Langkah 2
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 3
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 4
Langkah 4.1
Batalkan faktor persekutuan dari .
Langkah 4.1.1
Faktorkan dari .
Langkah 4.1.2
Batalkan faktor persekutuan.
Langkah 4.1.3
Tulis kembali pernyataannya.
Langkah 4.2
Kalikan dengan .