Kalkulus Contoh

Cari Titik-titik Beloknya 1/4x^4+5x^3+75/2x^2
Langkah 1
Tulis sebagai fungsi.
Langkah 2
Tentukan turunan keduanya.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 2.1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.1.2
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 2.1.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.1.2.3
Gabungkan dan .
Langkah 2.1.2.4
Gabungkan dan .
Langkah 2.1.2.5
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 2.1.2.5.1
Batalkan faktor persekutuan.
Langkah 2.1.2.5.2
Bagilah dengan .
Langkah 2.1.3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 2.1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.1.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.1.3.3
Kalikan dengan .
Langkah 2.1.4
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 2.1.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.1.4.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.1.4.3
Gabungkan dan .
Langkah 2.1.4.4
Kalikan dengan .
Langkah 2.1.4.5
Gabungkan dan .
Langkah 2.1.4.6
Hapus faktor persekutuan dari dan .
Ketuk untuk lebih banyak langkah...
Langkah 2.1.4.6.1
Faktorkan dari .
Langkah 2.1.4.6.2
Batalkan faktor persekutuan.
Ketuk untuk lebih banyak langkah...
Langkah 2.1.4.6.2.1
Faktorkan dari .
Langkah 2.1.4.6.2.2
Batalkan faktor persekutuan.
Langkah 2.1.4.6.2.3
Tulis kembali pernyataannya.
Langkah 2.1.4.6.2.4
Bagilah dengan .
Langkah 2.2
Tentukan turunan keduanya.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.2.1.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2.2
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2.2.3
Kalikan dengan .
Langkah 2.2.3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2.3.3
Kalikan dengan .
Langkah 2.3
Turunan kedua dari terhadap adalah .
Langkah 3
Atur turunan keduanya agar sama dengan dan selesaikan persamaan .
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Atur turunan keduanya sama dengan .
Langkah 3.2
Faktorkan sisi kiri persamaannya.
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1
Faktorkan dari .
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1.1
Faktorkan dari .
Langkah 3.2.1.2
Faktorkan dari .
Langkah 3.2.1.3
Faktorkan dari .
Langkah 3.2.1.4
Faktorkan dari .
Langkah 3.2.1.5
Faktorkan dari .
Langkah 3.2.2
Faktorkan menggunakan aturan kuadrat sempurna.
Ketuk untuk lebih banyak langkah...
Langkah 3.2.2.1
Tulis kembali sebagai .
Langkah 3.2.2.2
Periksa apakah suku tengahnya merupakan dua kali hasil perkalian dari bilangan yang dikuadratkan di suku pertama dan suku ketiga.
Langkah 3.2.2.3
Tulis kembali polinomialnya.
Langkah 3.2.2.4
Faktorkan menggunakan aturan trinomial kuadrat sempurna , di mana dan .
Langkah 3.3
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 3.3.1
Bagilah setiap suku di dengan .
Langkah 3.3.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 3.3.2.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 3.3.2.1.1
Batalkan faktor persekutuan.
Langkah 3.3.2.1.2
Bagilah dengan .
Langkah 3.3.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 3.3.3.1
Bagilah dengan .
Langkah 3.4
Atur agar sama dengan .
Langkah 3.5
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 4
Tentukan titik di mana turunan keduanya adalah .
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Substitusikan dalam untuk menemukan nilai dari .
Ketuk untuk lebih banyak langkah...
Langkah 4.1.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 4.1.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.2.1.1
Naikkan menjadi pangkat .
Langkah 4.1.2.1.2
Gabungkan dan .
Langkah 4.1.2.1.3
Naikkan menjadi pangkat .
Langkah 4.1.2.1.4
Kalikan dengan .
Langkah 4.1.2.1.5
Naikkan menjadi pangkat .
Langkah 4.1.2.1.6
Kalikan .
Ketuk untuk lebih banyak langkah...
Langkah 4.1.2.1.6.1
Gabungkan dan .
Langkah 4.1.2.1.6.2
Kalikan dengan .
Langkah 4.1.2.2
Menentukan penyebut persekutuan.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.2.2.1
Tulis sebagai pecahan dengan penyebut .
Langkah 4.1.2.2.2
Kalikan dengan .
Langkah 4.1.2.2.3
Kalikan dengan .
Langkah 4.1.2.2.4
Kalikan dengan .
Langkah 4.1.2.2.5
Kalikan dengan .
Langkah 4.1.2.2.6
Kalikan dengan .
Langkah 4.1.2.3
Gabungkan pembilang dari penyebut persekutuan.
Langkah 4.1.2.4
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.2.4.1
Kalikan dengan .
Langkah 4.1.2.4.2
Kalikan dengan .
Langkah 4.1.2.5
Sederhanakan dengan menambahkan dan mengurangkan.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.2.5.1
Kurangi dengan .
Langkah 4.1.2.5.2
Tambahkan dan .
Langkah 4.1.2.6
Jawaban akhirnya adalah .
Langkah 4.2
Titiknya yang ditemukan dengan mensubsitusi dalam adalah . Titik ini dapat menjadi titik belok.
Langkah 5
Pisahkan menjadi interval di sekitar titik-titik yang dapat berpotensi menjadi titik-titik belok.
Langkah 6
Substitusikan nilai dari interval ke dalam turunan keduanya untuk menentukan apakah naik atau turun.
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 6.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.1.1
Naikkan menjadi pangkat .
Langkah 6.2.1.2
Kalikan dengan .
Langkah 6.2.1.3
Kalikan dengan .
Langkah 6.2.2
Sederhanakan dengan menambahkan dan mengurangkan.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.2.1
Kurangi dengan .
Langkah 6.2.2.2
Tambahkan dan .
Langkah 6.2.3
Jawaban akhirnya adalah .
Langkah 6.3
Pada , turunan keduanya adalah . Karena ini positif, turunan keduanya meningkat pada interval .
Meningkat pada karena
Meningkat pada karena
Langkah 7
Substitusikan nilai dari interval ke dalam turunan keduanya untuk menentukan apakah naik atau turun.
Ketuk untuk lebih banyak langkah...
Langkah 7.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 7.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 7.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 7.2.1.1
Naikkan menjadi pangkat .
Langkah 7.2.1.2
Kalikan dengan .
Langkah 7.2.1.3
Kalikan dengan .
Langkah 7.2.2
Sederhanakan dengan menambahkan dan mengurangkan.
Ketuk untuk lebih banyak langkah...
Langkah 7.2.2.1
Kurangi dengan .
Langkah 7.2.2.2
Tambahkan dan .
Langkah 7.2.3
Jawaban akhirnya adalah .
Langkah 7.3
Pada , turunan keduanya adalah . Karena ini positif, turunan keduanya meningkat pada interval .
Meningkat pada karena
Meningkat pada karena
Langkah 8
Titik belok adalah titik pada kurva ketika kecekungan berubah dari positif ke negatif atau dari negatif ke positif. Tidak ada titik pada grafik yang memenuhi syarat.
Tidak Ada Titik Belok