Kalkulus Contoh

Tentukan Garis Singgung pada (0,-3) y=-3/((3x^2+1)^3) , (0,-3)
,
Langkah 1
Tentukan turunan pertama dan evaluasi di dan untuk menentukan gradien garis tangen.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Diferensialkan menggunakan Kaidah Kelipatan Tetap.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1
Pindahkan tanda negatif di depan pecahan.
Langkah 1.1.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.3
Terapkan aturan-aturan dasar eksponen.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.3.1
Tulis kembali sebagai .
Langkah 1.1.3.2
Kalikan eksponen dalam .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.3.2.1
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 1.1.3.2.2
Kalikan dengan .
Langkah 1.2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 1.2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.2.3
Ganti semua kemunculan dengan .
Langkah 1.3
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.1
Kalikan dengan .
Langkah 1.3.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.3.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.5
Kalikan dengan .
Langkah 1.3.6
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.7
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.7.1
Tambahkan dan .
Langkah 1.3.7.2
Kalikan dengan .
Langkah 1.4
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.4.1
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 1.4.2
Gabungkan suku-sukunya.
Ketuk untuk lebih banyak langkah...
Langkah 1.4.2.1
Gabungkan dan .
Langkah 1.4.2.2
Gabungkan dan .
Langkah 1.5
Evaluasi turunan pada .
Langkah 1.6
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.6.1
Kalikan dengan .
Langkah 1.6.2
Sederhanakan penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.6.2.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 1.6.2.2
Kalikan dengan .
Langkah 1.6.2.3
Tambahkan dan .
Langkah 1.6.2.4
Satu dipangkat berapa pun sama dengan satu.
Langkah 1.6.3
Bagilah dengan .
Langkah 2
Masukkan nilai gradien dan titik koordinat ke dalam rumus persamaan garis lurus dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Gunakan gradien dan titik yang diberikan untuk menggantikan dan dalam bentuk titik kemiringan , yang diturunkan dari persamaan gradien .
Langkah 2.2
Sederhanakan persamaannya dan pastikan tetap dalam bentuk titik kemiringan.
Langkah 2.3
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1.1
Tambahkan dan .
Langkah 2.3.1.2
Kalikan dengan .
Langkah 2.3.2
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 3