Masukkan soal...
Kalkulus Contoh
Langkah 1
Tulis sebagai fungsi.
Langkah 2
Fungsi dapat ditemukan dengan mencari integral tak tentu dari turunan .
Langkah 3
Buat integral untuk dipecahkan.
Langkah 4
Langkah 4.1
Tulis polinomial yang akan dibagi. Jika tidak ada suku untuk setiap eksponen, masukan suku dengan nilai .
+ | + | + |
Langkah 4.2
Bagilah suku dengan pangkat tertinggi pada bilangan yang dibagi dengan suku berpangkat tertinggi pada pembagi .
+ | + | + |
Langkah 4.3
Kalikan suku hasil bagi baru dengan pembagi.
+ | + | + | |||||||
+ | + |
Langkah 4.4
Pernyataannya perlu dikurangi dari bilangan yang dibagi sehingga ubah semua tanda dalam
+ | + | + | |||||||
- | - |
Langkah 4.5
Setelah mengubah tandanya, tambahkan pembagi terakhir dari perkalian polinomial untuk mencari pembagi baru.
+ | + | + | |||||||
- | - | ||||||||
Langkah 4.6
Mengeluarkan suku berikutnya dari bilangan yang dibagi asli ke dalam bilangan yang dibagi saat ini.
+ | + | + | |||||||
- | - | ||||||||
+ |
Langkah 4.7
Jawaban akhirnya adalah hasil bagi ditambah sisanya per pembagi.
Langkah 5
Bagi integral tunggal menjadi beberapa integral.
Langkah 6
Menurut Kaidah Pangkat, integral dari terhadap adalah .
Langkah 7
Langkah 7.1
Biarkan . Tentukan .
Langkah 7.1.1
Diferensialkan .
Langkah 7.1.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 7.1.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 7.1.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 7.1.5
Tambahkan dan .
Langkah 7.2
Tulis kembali soalnya menggunakan dan .
Langkah 8
Integral dari terhadap adalah .
Langkah 9
Sederhanakan.
Langkah 10
Ganti semua kemunculan dengan .
Langkah 11
Jawabannya adalah antiturunan dari fungsi .