Kalkulus Contoh

Tentukan Turunan - d/dx -2e^(3x)sin(2x)+3e^(3x)cos(2x)
Langkah 1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 2.3
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 2.3.2
Turunan dari terhadap adalah .
Langkah 2.3.3
Ganti semua kemunculan dengan .
Langkah 2.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.5
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.6
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 2.6.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 2.6.2
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana =.
Langkah 2.6.3
Ganti semua kemunculan dengan .
Langkah 2.7
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.8
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.9
Kalikan dengan .
Langkah 2.10
Pindahkan ke sebelah kiri .
Langkah 2.11
Kalikan dengan .
Langkah 2.12
Pindahkan ke sebelah kiri .
Langkah 3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.2
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 3.3
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 3.3.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 3.3.2
Turunan dari terhadap adalah .
Langkah 3.3.3
Ganti semua kemunculan dengan .
Langkah 3.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.5
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.6
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 3.6.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 3.6.2
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana =.
Langkah 3.6.3
Ganti semua kemunculan dengan .
Langkah 3.7
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.8
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.9
Kalikan dengan .
Langkah 3.10
Kalikan dengan .
Langkah 3.11
Kalikan dengan .
Langkah 3.12
Pindahkan ke sebelah kiri .
Langkah 4
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Terapkan sifat distributif.
Langkah 4.2
Terapkan sifat distributif.
Langkah 4.3
Gabungkan suku-sukunya.
Ketuk untuk lebih banyak langkah...
Langkah 4.3.1
Kalikan dengan .
Langkah 4.3.2
Kalikan dengan .
Langkah 4.3.3
Kalikan dengan .
Langkah 4.3.4
Kalikan dengan .
Langkah 4.3.5
Kurangi dengan .
Ketuk untuk lebih banyak langkah...
Langkah 4.3.5.1
Pindahkan .
Langkah 4.3.5.2
Kurangi dengan .
Langkah 4.3.6
Tambahkan dan .
Ketuk untuk lebih banyak langkah...
Langkah 4.3.6.1
Pindahkan .
Langkah 4.3.6.2
Tambahkan dan .