Kalkulus Contoh

Evaluasi Limitnya limit ketika x mendekati 1 dari ( akar pangkat tiga dari x+ akar kuadrat dari x-2)/(x-1)
Langkah 1
Terapkan aturan L'Hospital.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Evaluasi limit dari pembilang dan limit dari penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1
Ambil limit dari pembilang dan limit dari penyebut.
Langkah 1.1.2
Evaluasi limit dari pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.2.1
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 1.1.2.2
Pindahkan limit ke bawah tanda akar.
Langkah 1.1.2.3
Pindahkan limit ke bawah tanda akar.
Langkah 1.1.2.4
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 1.1.2.5
Evaluasi limit-limit dengan memasukkan ke semua munculnya (Variabel1).
Ketuk untuk lebih banyak langkah...
Langkah 1.1.2.5.1
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.1.2.5.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.1.2.6
Sederhanakan jawabannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.2.6.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.2.6.1.1
Sebarang akar dari adalah .
Langkah 1.1.2.6.1.2
Sebarang akar dari adalah .
Langkah 1.1.2.6.1.3
Kalikan dengan .
Langkah 1.1.2.6.2
Tambahkan dan .
Langkah 1.1.2.6.3
Kurangi dengan .
Langkah 1.1.3
Evaluasi limit dari penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.3.1
Evaluasi limitnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.3.1.1
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 1.1.3.1.2
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 1.1.3.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.1.3.3
Sederhanakan jawabannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.3.3.1
Kalikan dengan .
Langkah 1.1.3.3.2
Kurangi dengan .
Langkah 1.1.3.3.3
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.1.3.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.1.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.2
Karena adalah bentuk tak tentu, terapkan Kaidah L'Hospital. Kaidah L'Hospital menyatakan bahwa limit dari hasil bagi fungsi sama dengan limit dari hasil bagi turunannya.
Langkah 1.3
Menentukan turunan dari pembilang dan penyebut.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.1
Diferensialkan pembilang dan penyebutnya.
Langkah 1.3.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.3.3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 1.3.3.1
Gunakan untuk menuliskan kembali sebagai .
Langkah 1.3.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.3.3
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 1.3.3.4
Gabungkan dan .
Langkah 1.3.3.5
Gabungkan pembilang dari penyebut persekutuan.
Langkah 1.3.3.6
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.3.6.1
Kalikan dengan .
Langkah 1.3.3.6.2
Kurangi dengan .
Langkah 1.3.3.7
Pindahkan tanda negatif di depan pecahan.
Langkah 1.3.4
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 1.3.4.1
Gunakan untuk menuliskan kembali sebagai .
Langkah 1.3.4.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.4.3
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 1.3.4.4
Gabungkan dan .
Langkah 1.3.4.5
Gabungkan pembilang dari penyebut persekutuan.
Langkah 1.3.4.6
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.4.6.1
Kalikan dengan .
Langkah 1.3.4.6.2
Kurangi dengan .
Langkah 1.3.4.7
Pindahkan tanda negatif di depan pecahan.
Langkah 1.3.5
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.6
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.6.1
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 1.3.6.2
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 1.3.6.3
Gabungkan suku-sukunya.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.6.3.1
Kalikan dengan .
Langkah 1.3.6.3.2
Kalikan dengan .
Langkah 1.3.6.3.3
Tambahkan dan .
Langkah 1.3.7
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.3.8
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.9
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.10
Tambahkan dan .
Langkah 1.4
Tulis kembali sebagai .
Langkah 1.5
Gabungkan suku-sukunya.
Ketuk untuk lebih banyak langkah...
Langkah 1.5.1
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 1.5.2
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 1.5.3
Tulis setiap pernyataan menggunakan penyebut umum dari , dengan mengalikan masing-masing pembilang dan penyebut dengan faktor dari yang sesuai.
Ketuk untuk lebih banyak langkah...
Langkah 1.5.3.1
Kalikan dengan .
Langkah 1.5.3.2
Kalikan dengan .
Langkah 1.5.3.3
Gunakan untuk menuliskan kembali sebagai .
Langkah 1.5.3.4
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 1.5.3.5
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 1.5.3.6
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 1.5.3.7
Tulis setiap pernyataan menggunakan penyebut umum dari , dengan mengalikan masing-masing pembilang dan penyebut dengan faktor dari yang sesuai.
Ketuk untuk lebih banyak langkah...
Langkah 1.5.3.7.1
Kalikan dengan .
Langkah 1.5.3.7.2
Kalikan dengan .
Langkah 1.5.3.7.3
Kalikan dengan .
Langkah 1.5.3.7.4
Kalikan dengan .
Langkah 1.5.3.8
Gabungkan pembilang dari penyebut persekutuan.
Langkah 1.5.3.9
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.5.3.9.1
Kalikan dengan .
Langkah 1.5.3.9.2
Tambahkan dan .
Langkah 1.5.3.10
Kalikan dengan .
Langkah 1.5.3.11
Kalikan dengan .
Langkah 1.5.3.12
Gunakan untuk menuliskan kembali sebagai .
Langkah 1.5.3.13
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 1.5.3.14
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 1.5.3.15
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 1.5.3.16
Tulis setiap pernyataan menggunakan penyebut umum dari , dengan mengalikan masing-masing pembilang dan penyebut dengan faktor dari yang sesuai.
Ketuk untuk lebih banyak langkah...
Langkah 1.5.3.16.1
Kalikan dengan .
Langkah 1.5.3.16.2
Kalikan dengan .
Langkah 1.5.3.16.3
Kalikan dengan .
Langkah 1.5.3.16.4
Kalikan dengan .
Langkah 1.5.3.17
Gabungkan pembilang dari penyebut persekutuan.
Langkah 1.5.3.18
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.5.3.18.1
Kalikan dengan .
Langkah 1.5.3.18.2
Tambahkan dan .
Langkah 1.5.4
Gabungkan pembilang dari penyebut persekutuan.
Langkah 1.6
Bagilah dengan .
Langkah 2
Evaluasi limitnya.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 2.2
Pisahkan limitnya menggunakan Kaidah Hasil Bagi Limit pada limitnya ketika mendekati .
Langkah 2.3
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 2.4
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 2.5
Pindahkan limit ke bawah tanda akar.
Langkah 2.6
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 2.7
Pindahkan pangkat dari di luar limit menggunakan Kaidah Pangkat Limit.
Langkah 2.8
Pindahkan pangkat dari di luar limit menggunakan Kaidah Pangkat Limit.
Langkah 3
Evaluasi limit-limit dengan memasukkan ke semua munculnya (Variabel1).
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 3.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 3.3
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 4
Sederhanakan jawabannya.
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.1
Sebarang akar dari adalah .
Langkah 4.1.2
Kalikan dengan .
Langkah 4.1.3
Satu dipangkat berapa pun sama dengan satu.
Langkah 4.1.4
Kalikan dengan .
Langkah 4.1.5
Tambahkan dan .
Langkah 4.2
Satu dipangkat berapa pun sama dengan satu.
Langkah 4.3
Bagilah dengan .
Langkah 4.4
Gabungkan dan .
Langkah 5
Hasilnya dapat ditampilkan dalam beberapa bentuk.
Bentuk Eksak:
Bentuk Desimal: