Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Tentukan turunan pertamanya.
Langkah 1.1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.1.2
Evaluasi .
Langkah 1.1.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.2.3
Gabungkan dan .
Langkah 1.1.2.4
Gabungkan dan .
Langkah 1.1.2.5
Batalkan faktor persekutuan dari .
Langkah 1.1.2.5.1
Batalkan faktor persekutuan.
Langkah 1.1.2.5.2
Bagilah dengan .
Langkah 1.1.3
Evaluasi .
Langkah 1.1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.3.3
Kalikan dengan .
Langkah 1.1.4
Evaluasi .
Langkah 1.1.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.4.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.4.3
Gabungkan dan .
Langkah 1.1.4.4
Kalikan dengan .
Langkah 1.1.4.5
Gabungkan dan .
Langkah 1.1.4.6
Hapus faktor persekutuan dari dan .
Langkah 1.1.4.6.1
Faktorkan dari .
Langkah 1.1.4.6.2
Batalkan faktor persekutuan.
Langkah 1.1.4.6.2.1
Faktorkan dari .
Langkah 1.1.4.6.2.2
Batalkan faktor persekutuan.
Langkah 1.1.4.6.2.3
Tulis kembali pernyataannya.
Langkah 1.1.4.6.2.4
Bagilah dengan .
Langkah 1.2
Tentukan turunan keduanya.
Langkah 1.2.1
Diferensialkan.
Langkah 1.2.1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.2.1.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.2.2
Evaluasi .
Langkah 1.2.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.2.2.3
Kalikan dengan .
Langkah 1.2.3
Evaluasi .
Langkah 1.2.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.2.3.3
Kalikan dengan .
Langkah 1.3
Turunan kedua dari terhadap adalah .
Langkah 2
Langkah 2.1
Atur turunan keduanya sama dengan .
Langkah 2.2
Faktorkan sisi kiri persamaannya.
Langkah 2.2.1
Faktorkan dari .
Langkah 2.2.1.1
Faktorkan dari .
Langkah 2.2.1.2
Faktorkan dari .
Langkah 2.2.1.3
Faktorkan dari .
Langkah 2.2.1.4
Faktorkan dari .
Langkah 2.2.1.5
Faktorkan dari .
Langkah 2.2.2
Faktorkan menggunakan aturan kuadrat sempurna.
Langkah 2.2.2.1
Tulis kembali sebagai .
Langkah 2.2.2.2
Periksa apakah suku tengahnya merupakan dua kali hasil perkalian dari bilangan yang dikuadratkan di suku pertama dan suku ketiga.
Langkah 2.2.2.3
Tulis kembali polinomialnya.
Langkah 2.2.2.4
Faktorkan menggunakan aturan trinomial kuadrat sempurna , di mana dan .
Langkah 2.3
Bagi setiap suku pada dengan dan sederhanakan.
Langkah 2.3.1
Bagilah setiap suku di dengan .
Langkah 2.3.2
Sederhanakan sisi kirinya.
Langkah 2.3.2.1
Batalkan faktor persekutuan dari .
Langkah 2.3.2.1.1
Batalkan faktor persekutuan.
Langkah 2.3.2.1.2
Bagilah dengan .
Langkah 2.3.3
Sederhanakan sisi kanannya.
Langkah 2.3.3.1
Bagilah dengan .
Langkah 2.4
Atur agar sama dengan .
Langkah 2.5
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 3
Langkah 3.1
Substitusikan dalam untuk menemukan nilai dari .
Langkah 3.1.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 3.1.2
Sederhanakan hasilnya.
Langkah 3.1.2.1
Sederhanakan setiap suku.
Langkah 3.1.2.1.1
Naikkan menjadi pangkat .
Langkah 3.1.2.1.2
Gabungkan dan .
Langkah 3.1.2.1.3
Naikkan menjadi pangkat .
Langkah 3.1.2.1.4
Kalikan dengan .
Langkah 3.1.2.1.5
Naikkan menjadi pangkat .
Langkah 3.1.2.1.6
Kalikan .
Langkah 3.1.2.1.6.1
Gabungkan dan .
Langkah 3.1.2.1.6.2
Kalikan dengan .
Langkah 3.1.2.2
Menentukan penyebut persekutuan.
Langkah 3.1.2.2.1
Tulis sebagai pecahan dengan penyebut .
Langkah 3.1.2.2.2
Kalikan dengan .
Langkah 3.1.2.2.3
Kalikan dengan .
Langkah 3.1.2.2.4
Kalikan dengan .
Langkah 3.1.2.2.5
Kalikan dengan .
Langkah 3.1.2.2.6
Kalikan dengan .
Langkah 3.1.2.3
Gabungkan pembilang dari penyebut persekutuan.
Langkah 3.1.2.4
Sederhanakan setiap suku.
Langkah 3.1.2.4.1
Kalikan dengan .
Langkah 3.1.2.4.2
Kalikan dengan .
Langkah 3.1.2.5
Sederhanakan dengan menambahkan dan mengurangkan.
Langkah 3.1.2.5.1
Kurangi dengan .
Langkah 3.1.2.5.2
Tambahkan dan .
Langkah 3.1.2.6
Jawaban akhirnya adalah .
Langkah 3.2
Titiknya yang ditemukan dengan mensubsitusi dalam adalah . Titik ini dapat menjadi titik belok.
Langkah 4
Pisahkan menjadi interval di sekitar titik-titik yang dapat berpotensi menjadi titik-titik belok.
Langkah 5
Langkah 5.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 5.2
Sederhanakan hasilnya.
Langkah 5.2.1
Sederhanakan setiap suku.
Langkah 5.2.1.1
Naikkan menjadi pangkat .
Langkah 5.2.1.2
Kalikan dengan .
Langkah 5.2.1.3
Kalikan dengan .
Langkah 5.2.2
Sederhanakan dengan menambahkan dan mengurangkan.
Langkah 5.2.2.1
Kurangi dengan .
Langkah 5.2.2.2
Tambahkan dan .
Langkah 5.2.3
Jawaban akhirnya adalah .
Langkah 5.3
Pada , turunan keduanya adalah . Karena ini positif, turunan keduanya meningkat pada interval .
Meningkat pada karena
Meningkat pada karena
Langkah 6
Langkah 6.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 6.2
Sederhanakan hasilnya.
Langkah 6.2.1
Sederhanakan setiap suku.
Langkah 6.2.1.1
Naikkan menjadi pangkat .
Langkah 6.2.1.2
Kalikan dengan .
Langkah 6.2.1.3
Kalikan dengan .
Langkah 6.2.2
Sederhanakan dengan menambahkan dan mengurangkan.
Langkah 6.2.2.1
Kurangi dengan .
Langkah 6.2.2.2
Tambahkan dan .
Langkah 6.2.3
Jawaban akhirnya adalah .
Langkah 6.3
Pada , turunan keduanya adalah . Karena ini positif, turunan keduanya meningkat pada interval .
Meningkat pada karena
Meningkat pada karena
Langkah 7
Titik belok adalah titik pada kurva ketika kecekungan berubah dari positif ke negatif atau dari negatif ke positif. Tidak ada titik pada grafik yang memenuhi syarat.
Tidak Ada Titik Belok