Kalkulus Contoh

Evaluasi Limitnya limit ketika x mendekati infinity dari x^(1/(x^2))
Langkah 1
Gunakan sifat dari logaritma untuk menyederhanakan limitnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Tulis kembali sebagai .
Langkah 1.2
Perluas dengan memindahkan ke luar logaritma.
Langkah 2
Evaluasi limitnya.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Pindahkan limit ke dalam eksponen.
Langkah 2.2
Gabungkan dan .
Langkah 3
Terapkan aturan L'Hospital.
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Evaluasi limit dari pembilang dan limit dari penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 3.1.1
Ambil limit dari pembilang dan limit dari penyebut.
Langkah 3.1.2
Ketika log mendekati tak hingga, nilainya menjadi .
Langkah 3.1.3
Limit pada tak hingga dari polinomial yang koefisien pertamanya positif adalah tak hingga.
Langkah 3.1.4
Tak hingga dibagi dengan tak hingga hasilnya tak terdefinisi.
Tidak terdefinisi
Langkah 3.2
Karena adalah bentuk tak tentu, terapkan Kaidah L'Hospital. Kaidah L'Hospital menyatakan bahwa limit dari hasil bagi fungsi sama dengan limit dari hasil bagi turunannya.
Langkah 3.3
Menentukan turunan dari pembilang dan penyebut.
Ketuk untuk lebih banyak langkah...
Langkah 3.3.1
Diferensialkan pembilang dan penyebutnya.
Langkah 3.3.2
Turunan dari terhadap adalah .
Langkah 3.3.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.4
Kalikan pembilang dengan balikan dari penyebut.
Langkah 3.5
Gabungkan faktor-faktor.
Ketuk untuk lebih banyak langkah...
Langkah 3.5.1
Kalikan dengan .
Langkah 3.5.2
Naikkan menjadi pangkat .
Langkah 3.5.3
Naikkan menjadi pangkat .
Langkah 3.5.4
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 3.5.5
Tambahkan dan .
Langkah 4
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 5
Karena pembilangnya mendekati bilangan riil sementara penyebutnya tidak terbatas, pecahan mendekati .
Langkah 6
Sederhanakan jawabannya.
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Kalikan dengan .
Langkah 6.2
Apa pun yang dinaikkan ke adalah .