Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 1.2
Diferensialkan.
Langkah 1.2.1
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.2.2
Pindahkan ke sebelah kiri .
Langkah 1.2.3
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.2.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2.5
Tambahkan dan .
Langkah 1.2.6
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2.7
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.2.8
Sederhanakan pernyataannya.
Langkah 1.2.8.1
Kalikan dengan .
Langkah 1.2.8.2
Pindahkan ke sebelah kiri .
Langkah 1.3
Sederhanakan.
Langkah 1.3.1
Terapkan sifat distributif.
Langkah 1.3.2
Terapkan sifat distributif.
Langkah 1.3.3
Gabungkan suku-sukunya.
Langkah 1.3.3.1
Kalikan dengan .
Langkah 1.3.3.2
Kalikan dengan .
Langkah 1.3.3.3
Naikkan menjadi pangkat .
Langkah 1.3.3.4
Naikkan menjadi pangkat .
Langkah 1.3.3.5
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 1.3.3.6
Tambahkan dan .
Langkah 1.3.3.7
Kurangi dengan .
Langkah 1.3.4
Susun kembali suku-suku.
Langkah 2
Langkah 2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.2
Evaluasi .
Langkah 2.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2.3
Kalikan dengan .
Langkah 2.3
Evaluasi .
Langkah 2.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3.3
Kalikan dengan .
Langkah 3
Untuk menentukan nilai maksimum dan minimum lokal dari fungsi, atur turunannya agar sama dengan , lalu selesaikan.
Langkah 4
Langkah 4.1
Tentukan turunan pertamanya.
Langkah 4.1.1
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 4.1.2
Diferensialkan.
Langkah 4.1.2.1
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.1.2.2
Pindahkan ke sebelah kiri .
Langkah 4.1.2.3
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 4.1.2.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.1.2.5
Tambahkan dan .
Langkah 4.1.2.6
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.1.2.7
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.1.2.8
Sederhanakan pernyataannya.
Langkah 4.1.2.8.1
Kalikan dengan .
Langkah 4.1.2.8.2
Pindahkan ke sebelah kiri .
Langkah 4.1.3
Sederhanakan.
Langkah 4.1.3.1
Terapkan sifat distributif.
Langkah 4.1.3.2
Terapkan sifat distributif.
Langkah 4.1.3.3
Gabungkan suku-sukunya.
Langkah 4.1.3.3.1
Kalikan dengan .
Langkah 4.1.3.3.2
Kalikan dengan .
Langkah 4.1.3.3.3
Naikkan menjadi pangkat .
Langkah 4.1.3.3.4
Naikkan menjadi pangkat .
Langkah 4.1.3.3.5
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 4.1.3.3.6
Tambahkan dan .
Langkah 4.1.3.3.7
Kurangi dengan .
Langkah 4.1.3.4
Susun kembali suku-suku.
Langkah 4.2
Turunan pertama dari terhadap adalah .
Langkah 5
Langkah 5.1
Buat turunan pertamanya agar sama dengan .
Langkah 5.2
Faktorkan dari .
Langkah 5.2.1
Faktorkan dari .
Langkah 5.2.2
Faktorkan dari .
Langkah 5.2.3
Faktorkan dari .
Langkah 5.3
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 5.4
Atur sama dengan .
Langkah 5.5
Atur agar sama dengan dan selesaikan .
Langkah 5.5.1
Atur sama dengan .
Langkah 5.5.2
Tambahkan ke kedua sisi persamaan.
Langkah 5.6
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
Langkah 6
Langkah 6.1
Domain dari pernyataan adalah semua bilangan riil, kecuali di mana pernyataannya tidak terdefinisi. Dalam hal ini, tidak ada bilangan riil yang membuat pernyataannya tidak terdefinisi.
Langkah 7
Titik kritis untuk dievaluasi.
Langkah 8
Evaluasi turunan kedua pada . Jika turunan keduanya positif, maka minimum lokal. Jika negatif, maka maksimum lokal.
Langkah 9
Langkah 9.1
Kalikan dengan .
Langkah 9.2
Tambahkan dan .
Langkah 10
adalah minimum lokal karena nilai dari turunan keduanya positif. Ini disebut sebagai uji turunan kedua.
adalah minimum lokal
Langkah 11
Langkah 11.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 11.2
Sederhanakan hasilnya.
Langkah 11.2.1
Kalikan dengan .
Langkah 11.2.2
Tambahkan dan .
Langkah 11.2.3
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 11.2.4
Kalikan dengan .
Langkah 11.2.5
Jawaban akhirnya adalah .
Langkah 12
Evaluasi turunan kedua pada . Jika turunan keduanya positif, maka minimum lokal. Jika negatif, maka maksimum lokal.
Langkah 13
Langkah 13.1
Kalikan dengan .
Langkah 13.2
Tambahkan dan .
Langkah 14
adalah maksimum lokal karena nilai dari turunan keduanya negatif. Ini disebut sebagai uji turunan kedua.
adalah maksimum lokal
Langkah 15
Langkah 15.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 15.2
Sederhanakan hasilnya.
Langkah 15.2.1
Kalikan dengan .
Langkah 15.2.2
Kurangi dengan .
Langkah 15.2.3
Naikkan menjadi pangkat .
Langkah 15.2.4
Kalikan dengan .
Langkah 15.2.5
Jawaban akhirnya adalah .
Langkah 16
Ini adalah ekstrem lokal untuk .
adalah minimum lokal
adalah maksimum lokal
Langkah 17