Masukkan soal...
Kalkulus Contoh
Langkah 1
Tulis sebagai fungsi.
Langkah 2
Fungsi dapat ditemukan dengan mencari integral tak tentu dari turunan .
Langkah 3
Buat integral untuk dipecahkan.
Langkah 4
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 5
Integralkan bagian demi bagian menggunakan rumus , di mana dan .
Langkah 6
Gabungkan dan .
Langkah 7
Langkah 7.1
Biarkan . Tentukan .
Langkah 7.1.1
Diferensialkan .
Langkah 7.1.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 7.1.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 7.1.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 7.1.5
Tambahkan dan .
Langkah 7.2
Tulis kembali soalnya menggunakan dan .
Langkah 8
Langkah 8.1
Kalikan dengan .
Langkah 8.2
Pindahkan ke sebelah kiri .
Langkah 9
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 10
Integral dari terhadap adalah .
Langkah 11
Sederhanakan.
Langkah 12
Ganti semua kemunculan dengan .
Langkah 13
Langkah 13.1
Gabungkan dan .
Langkah 13.2
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 13.3
Gabungkan dan .
Langkah 13.4
Gabungkan pembilang dari penyebut persekutuan.
Langkah 13.5
Batalkan faktor persekutuan dari .
Langkah 13.5.1
Batalkan faktor persekutuan.
Langkah 13.5.2
Tulis kembali pernyataannya.
Langkah 13.6
Pindahkan ke sebelah kiri .
Langkah 13.7
Susun kembali faktor-faktor dalam .
Langkah 14
Jawabannya adalah antiturunan dari fungsi .