Kalkulus Contoh

Tentukan Antiturunannya (x-1)/(x+2)
Langkah 1
Tulis sebagai fungsi.
Langkah 2
Fungsi dapat ditemukan dengan mencari integral tak tentu dari turunan .
Langkah 3
Buat integral untuk dipecahkan.
Langkah 4
Bagilah dengan .
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Tulis polinomial yang akan dibagi. Jika tidak ada suku untuk setiap eksponen, masukan suku dengan nilai .
+-
Langkah 4.2
Bagilah suku dengan pangkat tertinggi pada bilangan yang dibagi dengan suku berpangkat tertinggi pada pembagi .
+-
Langkah 4.3
Kalikan suku hasil bagi baru dengan pembagi.
+-
++
Langkah 4.4
Pernyataannya perlu dikurangi dari bilangan yang dibagi sehingga ubah semua tanda dalam
+-
--
Langkah 4.5
Setelah mengubah tandanya, tambahkan pembagi terakhir dari perkalian polinomial untuk mencari pembagi baru.
+-
--
-
Langkah 4.6
Jawaban akhirnya adalah hasil bagi ditambah sisanya per pembagi.
Langkah 5
Bagi integral tunggal menjadi beberapa integral.
Langkah 6
Terapkan aturan konstanta.
Langkah 7
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 8
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 9
Kalikan dengan .
Langkah 10
Biarkan . Kemudian . Tulis kembali menggunakan dan .
Ketuk untuk lebih banyak langkah...
Langkah 10.1
Biarkan . Tentukan .
Ketuk untuk lebih banyak langkah...
Langkah 10.1.1
Diferensialkan .
Langkah 10.1.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 10.1.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 10.1.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 10.1.5
Tambahkan dan .
Langkah 10.2
Tulis kembali soalnya menggunakan dan .
Langkah 11
Integral dari terhadap adalah .
Langkah 12
Sederhanakan.
Langkah 13
Ganti semua kemunculan dengan .
Langkah 14
Jawabannya adalah antiturunan dari fungsi .