Kalkulus Contoh

Tentukan Antiturunannya f(x)=1/((5x-1)^4)
Langkah 1
Fungsi dapat ditemukan dengan mencari integral tak tentu dari turunan .
Langkah 2
Buat integral untuk dipecahkan.
Langkah 3
Biarkan . Kemudian sehingga . Tulis kembali menggunakan dan .
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Biarkan . Tentukan .
Ketuk untuk lebih banyak langkah...
Langkah 3.1.1
Diferensialkan .
Langkah 3.1.2
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 3.1.3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 3.1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.1.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.1.3.3
Kalikan dengan .
Langkah 3.1.4
Diferensialkan menggunakan Aturan Konstanta.
Ketuk untuk lebih banyak langkah...
Langkah 3.1.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.1.4.2
Tambahkan dan .
Langkah 3.2
Tulis kembali soalnya menggunakan dan .
Langkah 4
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Kalikan dengan .
Langkah 4.2
Pindahkan ke sebelah kiri .
Langkah 5
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 6
Terapkan aturan-aturan dasar eksponen.
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Pindahkan dari penyebut dengan menaikkannya menjadi pangkat .
Langkah 6.2
Kalikan eksponen dalam .
Ketuk untuk lebih banyak langkah...
Langkah 6.2.1
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 6.2.2
Kalikan dengan .
Langkah 7
Menurut Kaidah Pangkat, integral dari terhadap adalah .
Langkah 8
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 8.1
Tulis kembali sebagai .
Langkah 8.2
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 8.2.1
Kalikan dengan .
Langkah 8.2.2
Pindahkan ke sebelah kiri .
Langkah 8.2.3
Kalikan dengan .
Langkah 8.2.4
Kalikan dengan .
Langkah 9
Ganti semua kemunculan dengan .
Langkah 10
Jawabannya adalah antiturunan dari fungsi .