Kalkulus Contoh

Tentukan Antiturunannya 1/(x(x-1))
Langkah 1
Tulis sebagai fungsi.
Langkah 2
Fungsi dapat ditemukan dengan mencari integral tak tentu dari turunan .
Langkah 3
Buat integral untuk dipecahkan.
Langkah 4
Tulis pecahan menggunakan penguraian pecahan parsial.
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Uraikan pecahan dan kalikan dengan penyebut persekutuan.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.1
Untuk setiap faktor pada penyebut, buat pecahan baru menggunakan faktor sebagai penyebutnya, dan nilai yang tidak diketahui sebagai pembilangnya. karena faktor pada penyebutnya linear, letakkan sebuah variabel di tempat .
Langkah 4.1.2
Kalikan setiap pecahan dalam persamaan dengan penyebut dari pernyataan awalnya. Dalam hal ini, penyebutnya adalah .
Langkah 4.1.3
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 4.1.3.1
Batalkan faktor persekutuan.
Langkah 4.1.3.2
Tulis kembali pernyataannya.
Langkah 4.1.4
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 4.1.4.1
Batalkan faktor persekutuan.
Langkah 4.1.4.2
Tulis kembali pernyataannya.
Langkah 4.1.5
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.5.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 4.1.5.1.1
Batalkan faktor persekutuan.
Langkah 4.1.5.1.2
Bagilah dengan .
Langkah 4.1.5.2
Terapkan sifat distributif.
Langkah 4.1.5.3
Pindahkan ke sebelah kiri .
Langkah 4.1.5.4
Tulis kembali sebagai .
Langkah 4.1.5.5
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 4.1.5.5.1
Batalkan faktor persekutuan.
Langkah 4.1.5.5.2
Bagilah dengan .
Langkah 4.1.6
Pindahkan .
Langkah 4.2
Buatlah persamaan untuk variabel pecahan parsial dan gunakan untuk membuat sistem persamaan.
Ketuk untuk lebih banyak langkah...
Langkah 4.2.1
Buat persamaan dari variabel pecahan parsial dengan menyamakan koefisien dari masing-masing sisi persamaan. Agar persamaannya sama, koefisien setara pada setiap sisi persamaan harus sama.
Langkah 4.2.2
Buat persamaan untuk variabel pecahan parsial dengan menyamakan koefisien suku yang tidak memuat . Agar persamaannya sama, koefisien setara pada setiap sisi persamaan harus sama.
Langkah 4.2.3
Buat sistem persamaan untuk menentukan koefisien dari pecahan parsialnya.
Langkah 4.3
Selesaikan sistem persamaan tersebut.
Ketuk untuk lebih banyak langkah...
Langkah 4.3.1
Selesaikan dalam .
Ketuk untuk lebih banyak langkah...
Langkah 4.3.1.1
Tulis kembali persamaan tersebut sebagai .
Langkah 4.3.1.2
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 4.3.1.2.1
Bagilah setiap suku di dengan .
Langkah 4.3.1.2.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 4.3.1.2.2.1
Membagi dua nilai negatif menghasilkan nilai positif.
Langkah 4.3.1.2.2.2
Bagilah dengan .
Langkah 4.3.1.2.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 4.3.1.2.3.1
Bagilah dengan .
Langkah 4.3.2
Substitusikan semua kemunculan dengan dalam masing-masing persamaan.
Ketuk untuk lebih banyak langkah...
Langkah 4.3.2.1
Substitusikan semua kemunculan dalam dengan .
Langkah 4.3.2.2
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 4.3.2.2.1
Hilangkan tanda kurung.
Langkah 4.3.3
Selesaikan dalam .
Ketuk untuk lebih banyak langkah...
Langkah 4.3.3.1
Tulis kembali persamaan tersebut sebagai .
Langkah 4.3.3.2
Tambahkan ke kedua sisi persamaan.
Langkah 4.3.4
Selesaikan sistem persamaan tersebut.
Langkah 4.3.5
Sebutkan semua penyelesaiannya.
Langkah 4.4
Ganti masing-masing koefisien pecahan parsial dalam dengan nilai-nilai yang didapat dari dan .
Langkah 4.5
Pindahkan tanda negatif di depan pecahan.
Langkah 5
Bagi integral tunggal menjadi beberapa integral.
Langkah 6
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 7
Integral dari terhadap adalah .
Langkah 8
Biarkan . Kemudian . Tulis kembali menggunakan dan .
Ketuk untuk lebih banyak langkah...
Langkah 8.1
Biarkan . Tentukan .
Ketuk untuk lebih banyak langkah...
Langkah 8.1.1
Diferensialkan .
Langkah 8.1.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 8.1.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 8.1.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 8.1.5
Tambahkan dan .
Langkah 8.2
Tulis kembali soalnya menggunakan dan .
Langkah 9
Integral dari terhadap adalah .
Langkah 10
Sederhanakan.
Langkah 11
Ganti semua kemunculan dengan .
Langkah 12
Jawabannya adalah antiturunan dari fungsi .