Kalkulus Contoh

Evaluasi Limitnya limit ketika x mendekati 4 dari (x^3 akar kuadrat dari x-128)/(x-4)
Langkah 1
Terapkan aturan L'Hospital.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Evaluasi limit dari pembilang dan limit dari penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1
Ambil limit dari pembilang dan limit dari penyebut.
Langkah 1.1.2
Evaluasi limit dari pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.2.1
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 1.1.2.2
Pisahkan limitnya menggunakan Kaidah Hasil Kali Limit pada limit ketika mendekati .
Langkah 1.1.2.3
Pindahkan pangkat dari di luar limit menggunakan Kaidah Pangkat Limit.
Langkah 1.1.2.4
Pindahkan limit ke bawah tanda akar.
Langkah 1.1.2.5
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 1.1.2.6
Evaluasi limit-limit dengan memasukkan ke semua munculnya (Variabel1).
Ketuk untuk lebih banyak langkah...
Langkah 1.1.2.6.1
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.1.2.6.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.1.2.7
Sederhanakan jawabannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.2.7.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.2.7.1.1
Naikkan menjadi pangkat .
Langkah 1.1.2.7.1.2
Tulis kembali sebagai .
Langkah 1.1.2.7.1.3
Mengeluarkan suku-suku dari bawah akar, dengan asumsi bahwa bilangan riil positif.
Langkah 1.1.2.7.1.4
Kalikan dengan .
Langkah 1.1.2.7.1.5
Kalikan dengan .
Langkah 1.1.2.7.2
Kurangi dengan .
Langkah 1.1.3
Evaluasi limit dari penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.3.1
Evaluasi limitnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.3.1.1
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 1.1.3.1.2
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 1.1.3.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.1.3.3
Sederhanakan jawabannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.3.3.1
Kalikan dengan .
Langkah 1.1.3.3.2
Kurangi dengan .
Langkah 1.1.3.3.3
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.1.3.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.1.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.2
Karena adalah bentuk tak tentu, terapkan Kaidah L'Hospital. Kaidah L'Hospital menyatakan bahwa limit dari hasil bagi fungsi sama dengan limit dari hasil bagi turunannya.
Langkah 1.3
Menentukan turunan dari pembilang dan penyebut.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.1
Diferensialkan pembilang dan penyebutnya.
Langkah 1.3.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.3.3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 1.3.3.1
Gunakan untuk menuliskan kembali sebagai .
Langkah 1.3.3.2
Kalikan dengan dengan menambahkan eksponennya.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.3.2.1
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 1.3.3.2.2
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 1.3.3.2.3
Gabungkan dan .
Langkah 1.3.3.2.4
Gabungkan pembilang dari penyebut persekutuan.
Langkah 1.3.3.2.5
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.3.2.5.1
Kalikan dengan .
Langkah 1.3.3.2.5.2
Tambahkan dan .
Langkah 1.3.3.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.3.4
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 1.3.3.5
Gabungkan dan .
Langkah 1.3.3.6
Gabungkan pembilang dari penyebut persekutuan.
Langkah 1.3.3.7
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.3.7.1
Kalikan dengan .
Langkah 1.3.3.7.2
Kurangi dengan .
Langkah 1.3.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.5
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.5.1
Tambahkan dan .
Langkah 1.3.5.2
Gabungkan dan .
Langkah 1.3.6
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.3.7
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.8
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.9
Tambahkan dan .
Langkah 1.4
Kalikan pembilang dengan balikan dari penyebut.
Langkah 1.5
Kalikan dengan .
Langkah 2
Evaluasi limitnya.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 2.2
Pindahkan pangkat dari di luar limit menggunakan Kaidah Pangkat Limit.
Langkah 3
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 4
Sederhanakan jawabannya.
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Tulis kembali sebagai .
Langkah 4.2
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 4.3
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 4.3.1
Batalkan faktor persekutuan.
Langkah 4.3.2
Tulis kembali pernyataannya.
Langkah 4.4
Naikkan menjadi pangkat .
Langkah 4.5
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 4.5.1
Faktorkan dari .
Langkah 4.5.2
Batalkan faktor persekutuan.
Langkah 4.5.3
Tulis kembali pernyataannya.
Langkah 4.6
Kalikan dengan .