Kalkulus Contoh

Evaluasi Limitnya limit ketika x mendekati 0 dari (1-cos(x)+sin(3x))/(1-cos(x)+tan(2x))
Langkah 1
Terapkan aturan L'Hospital.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Evaluasi limit dari pembilang dan limit dari penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1
Ambil limit dari pembilang dan limit dari penyebut.
Langkah 1.1.2
Evaluasi limit dari pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.2.1
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 1.1.2.2
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 1.1.2.3
Pindahkan batas di dalam fungsi trigonometri karena kosinus kontinu.
Langkah 1.1.2.4
Pindahkan batas di dalam fungsi trigonometri karena sinus kontinu.
Langkah 1.1.2.5
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 1.1.2.6
Evaluasi limit-limit dengan memasukkan ke semua munculnya (Variabel1).
Ketuk untuk lebih banyak langkah...
Langkah 1.1.2.6.1
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.1.2.6.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.1.2.7
Sederhanakan jawabannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.2.7.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.2.7.1.1
Nilai eksak dari adalah .
Langkah 1.1.2.7.1.2
Kalikan dengan .
Langkah 1.1.2.7.1.3
Kalikan dengan .
Langkah 1.1.2.7.1.4
Nilai eksak dari adalah .
Langkah 1.1.2.7.2
Kurangi dengan .
Langkah 1.1.2.7.3
Tambahkan dan .
Langkah 1.1.3
Evaluasi limit dari penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.3.1
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 1.1.3.2
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 1.1.3.3
Pindahkan batas di dalam fungsi trigonometri karena kosinus kontinu.
Langkah 1.1.3.4
Pindahkan batas di dalam fungsi trigonometri karena tangen kontinu.
Langkah 1.1.3.5
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 1.1.3.6
Evaluasi limit-limit dengan memasukkan ke semua munculnya (Variabel1).
Ketuk untuk lebih banyak langkah...
Langkah 1.1.3.6.1
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.1.3.6.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.1.3.7
Sederhanakan jawabannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.3.7.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.3.7.1.1
Nilai eksak dari adalah .
Langkah 1.1.3.7.1.2
Kalikan dengan .
Langkah 1.1.3.7.1.3
Kalikan dengan .
Langkah 1.1.3.7.1.4
Nilai eksak dari adalah .
Langkah 1.1.3.7.2
Kurangi dengan .
Langkah 1.1.3.7.3
Tambahkan dan .
Langkah 1.1.3.7.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.1.3.8
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.1.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.2
Karena adalah bentuk tak tentu, terapkan Kaidah L'Hospital. Kaidah L'Hospital menyatakan bahwa limit dari hasil bagi fungsi sama dengan limit dari hasil bagi turunannya.
Langkah 1.3
Menentukan turunan dari pembilang dan penyebut.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.1
Diferensialkan pembilang dan penyebutnya.
Langkah 1.3.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.3.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.4
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 1.3.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.4.2
Turunan dari terhadap adalah .
Langkah 1.3.4.3
Kalikan dengan .
Langkah 1.3.4.4
Kalikan dengan .
Langkah 1.3.5
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 1.3.5.1
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 1.3.5.1.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 1.3.5.1.2
Turunan dari terhadap adalah .
Langkah 1.3.5.1.3
Ganti semua kemunculan dengan .
Langkah 1.3.5.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.5.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.5.4
Kalikan dengan .
Langkah 1.3.5.5
Pindahkan ke sebelah kiri .
Langkah 1.3.6
Tambahkan dan .
Langkah 1.3.7
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.3.8
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.9
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 1.3.9.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.9.2
Turunan dari terhadap adalah .
Langkah 1.3.9.3
Kalikan dengan .
Langkah 1.3.9.4
Kalikan dengan .
Langkah 1.3.10
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 1.3.10.1
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 1.3.10.1.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 1.3.10.1.2
Turunan dari terhadap adalah .
Langkah 1.3.10.1.3
Ganti semua kemunculan dengan .
Langkah 1.3.10.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.10.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.10.4
Kalikan dengan .
Langkah 1.3.10.5
Pindahkan ke sebelah kiri .
Langkah 1.3.11
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.11.1
Tambahkan dan .
Langkah 1.3.11.2
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.11.2.1
Tulis kembali dalam bentuk sinus dan kosinus.
Langkah 1.3.11.2.2
Terapkan kaidah hasil kali ke .
Langkah 1.3.11.2.3
Satu dipangkat berapa pun sama dengan satu.
Langkah 1.3.11.2.4
Gabungkan dan .
Langkah 1.4
Gabungkan suku-sukunya.
Ketuk untuk lebih banyak langkah...
Langkah 1.4.1
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 1.4.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 2
Evaluasi limitnya.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Pisahkan limitnya menggunakan Kaidah Hasil Bagi Limit pada limitnya ketika mendekati .
Langkah 2.2
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 2.3
Pindahkan batas di dalam fungsi trigonometri karena sinus kontinu.
Langkah 2.4
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 2.5
Pindahkan batas di dalam fungsi trigonometri karena kosinus kontinu.
Langkah 2.6
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 2.7
Pisahkan limitnya menggunakan Kaidah Hasil Bagi Limit pada limitnya ketika mendekati .
Langkah 2.8
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 2.9
Pisahkan limitnya menggunakan Kaidah Hasil Kali Limit pada limit ketika mendekati .
Langkah 2.10
Pindahkan batas di dalam fungsi trigonometri karena sinus kontinu.
Langkah 2.11
Pindahkan pangkat dari di luar limit menggunakan Kaidah Pangkat Limit.
Langkah 2.12
Pindahkan batas di dalam fungsi trigonometri karena kosinus kontinu.
Langkah 2.13
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 2.14
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 2.15
Pindahkan pangkat dari di luar limit menggunakan Kaidah Pangkat Limit.
Langkah 2.16
Pindahkan batas di dalam fungsi trigonometri karena kosinus kontinu.
Langkah 2.17
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 3
Evaluasi limit-limit dengan memasukkan ke semua munculnya (Variabel1).
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 3.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 3.3
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 3.4
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 3.5
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 4
Sederhanakan jawabannya.
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Kalikan pembilang dengan balikan dari penyebut.
Langkah 4.2
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 4.2.1
Kalikan dengan .
Langkah 4.2.2
Nilai eksak dari adalah .
Langkah 4.2.3
Satu dipangkat berapa pun sama dengan satu.
Langkah 4.3
Sederhanakan penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 4.3.1
Nilai eksak dari adalah .
Langkah 4.3.2
Kalikan dengan .
Langkah 4.3.3
Nilai eksak dari adalah .
Langkah 4.3.4
Satu dipangkat berapa pun sama dengan satu.
Langkah 4.3.5
Kalikan dengan .
Langkah 4.3.6
Tambahkan dan .
Langkah 4.4
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 4.4.1
Nilai eksak dari adalah .
Langkah 4.4.2
Kalikan dengan .
Langkah 4.4.3
Nilai eksak dari adalah .
Langkah 4.4.4
Kalikan dengan .
Langkah 4.5
Tambahkan dan .
Langkah 4.6
Gabungkan dan .
Langkah 5
Hasilnya dapat ditampilkan dalam beberapa bentuk.
Bentuk Eksak:
Bentuk Desimal: