Kalkulus Contoh

Tentukan Antiturunannya 1/3cos(6x)-4sin(4x)
Langkah 1
Tulis sebagai fungsi.
Langkah 2
Fungsi dapat ditemukan dengan mencari integral tak tentu dari turunan .
Langkah 3
Buat integral untuk dipecahkan.
Langkah 4
Bagi integral tunggal menjadi beberapa integral.
Langkah 5
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 6
Biarkan . Kemudian sehingga . Tulis kembali menggunakan dan .
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Biarkan . Tentukan .
Ketuk untuk lebih banyak langkah...
Langkah 6.1.1
Diferensialkan .
Langkah 6.1.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 6.1.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 6.1.4
Kalikan dengan .
Langkah 6.2
Tulis kembali soalnya menggunakan dan .
Langkah 7
Gabungkan dan .
Langkah 8
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 9
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 9.1
Kalikan dengan .
Langkah 9.2
Kalikan dengan .
Langkah 10
Integral dari terhadap adalah .
Langkah 11
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 12
Biarkan . Kemudian sehingga . Tulis kembali menggunakan dan .
Ketuk untuk lebih banyak langkah...
Langkah 12.1
Biarkan . Tentukan .
Ketuk untuk lebih banyak langkah...
Langkah 12.1.1
Diferensialkan .
Langkah 12.1.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 12.1.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 12.1.4
Kalikan dengan .
Langkah 12.2
Tulis kembali soalnya menggunakan dan .
Langkah 13
Gabungkan dan .
Langkah 14
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 15
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 15.1
Gabungkan dan .
Langkah 15.2
Hapus faktor persekutuan dari dan .
Ketuk untuk lebih banyak langkah...
Langkah 15.2.1
Faktorkan dari .
Langkah 15.2.2
Batalkan faktor persekutuan.
Ketuk untuk lebih banyak langkah...
Langkah 15.2.2.1
Faktorkan dari .
Langkah 15.2.2.2
Batalkan faktor persekutuan.
Langkah 15.2.2.3
Tulis kembali pernyataannya.
Langkah 15.2.2.4
Bagilah dengan .
Langkah 16
Integral dari terhadap adalah .
Langkah 17
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 17.1
Sederhanakan.
Langkah 17.2
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 17.2.1
Kalikan dengan .
Langkah 17.2.2
Kalikan dengan .
Langkah 18
Substitusikan kembali untuk setiap variabel substitusi pengintegralan.
Ketuk untuk lebih banyak langkah...
Langkah 18.1
Ganti semua kemunculan dengan .
Langkah 18.2
Ganti semua kemunculan dengan .
Langkah 19
Jawabannya adalah antiturunan dari fungsi .