Masukkan soal...
Kalkulus Contoh
Langkah 1
Tulis sebagai fungsi.
Langkah 2
Fungsi dapat ditemukan dengan mencari integral tak tentu dari turunan .
Langkah 3
Buat integral untuk dipecahkan.
Langkah 4
Langkah 4.1
Tulis kembali sebagai .
Langkah 4.2
Perluas menggunakan Metode FOIL.
Langkah 4.2.1
Terapkan sifat distributif.
Langkah 4.2.2
Terapkan sifat distributif.
Langkah 4.2.3
Terapkan sifat distributif.
Langkah 4.3
Sederhanakan dan gabungkan suku-suku sejenis.
Langkah 4.3.1
Sederhanakan setiap suku.
Langkah 4.3.1.1
Kalikan dengan .
Langkah 4.3.1.2
Pindahkan ke sebelah kiri .
Langkah 4.3.1.3
Kalikan dengan dengan menambahkan eksponennya.
Langkah 4.3.1.3.1
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 4.3.1.3.2
Tambahkan dan .
Langkah 4.3.2
Tambahkan dan .
Langkah 5
Bagi integral tunggal menjadi beberapa integral.
Langkah 6
Terapkan aturan konstanta.
Langkah 7
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 8
Langkah 8.1
Biarkan . Tentukan .
Langkah 8.1.1
Diferensialkan .
Langkah 8.1.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 8.1.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 8.1.4
Kalikan dengan .
Langkah 8.2
Tulis kembali soalnya menggunakan dan .
Langkah 9
Gabungkan dan .
Langkah 10
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 11
Gabungkan dan .
Langkah 12
Integral dari terhadap adalah .
Langkah 13
Langkah 13.1
Biarkan . Tentukan .
Langkah 13.1.1
Diferensialkan .
Langkah 13.1.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 13.1.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 13.1.4
Kalikan dengan .
Langkah 13.2
Tulis kembali soalnya menggunakan dan .
Langkah 14
Gabungkan dan .
Langkah 15
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 16
Integral dari terhadap adalah .
Langkah 17
Sederhanakan.
Langkah 18
Langkah 18.1
Ganti semua kemunculan dengan .
Langkah 18.2
Ganti semua kemunculan dengan .
Langkah 19
Jawabannya adalah antiturunan dari fungsi .