Kalkulus Contoh

Tentukan Antiturunannya (2+e^(3x))^2
Langkah 1
Tulis sebagai fungsi.
Langkah 2
Fungsi dapat ditemukan dengan mencari integral tak tentu dari turunan .
Langkah 3
Buat integral untuk dipecahkan.
Langkah 4
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Tulis kembali sebagai .
Langkah 4.2
Perluas menggunakan Metode FOIL.
Ketuk untuk lebih banyak langkah...
Langkah 4.2.1
Terapkan sifat distributif.
Langkah 4.2.2
Terapkan sifat distributif.
Langkah 4.2.3
Terapkan sifat distributif.
Langkah 4.3
Sederhanakan dan gabungkan suku-suku sejenis.
Ketuk untuk lebih banyak langkah...
Langkah 4.3.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 4.3.1.1
Kalikan dengan .
Langkah 4.3.1.2
Pindahkan ke sebelah kiri .
Langkah 4.3.1.3
Kalikan dengan dengan menambahkan eksponennya.
Ketuk untuk lebih banyak langkah...
Langkah 4.3.1.3.1
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 4.3.1.3.2
Tambahkan dan .
Langkah 4.3.2
Tambahkan dan .
Langkah 5
Bagi integral tunggal menjadi beberapa integral.
Langkah 6
Terapkan aturan konstanta.
Langkah 7
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 8
Biarkan . Kemudian sehingga . Tulis kembali menggunakan dan .
Ketuk untuk lebih banyak langkah...
Langkah 8.1
Biarkan . Tentukan .
Ketuk untuk lebih banyak langkah...
Langkah 8.1.1
Diferensialkan .
Langkah 8.1.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 8.1.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 8.1.4
Kalikan dengan .
Langkah 8.2
Tulis kembali soalnya menggunakan dan .
Langkah 9
Gabungkan dan .
Langkah 10
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 11
Gabungkan dan .
Langkah 12
Integral dari terhadap adalah .
Langkah 13
Biarkan . Kemudian sehingga . Tulis kembali menggunakan dan .
Ketuk untuk lebih banyak langkah...
Langkah 13.1
Biarkan . Tentukan .
Ketuk untuk lebih banyak langkah...
Langkah 13.1.1
Diferensialkan .
Langkah 13.1.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 13.1.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 13.1.4
Kalikan dengan .
Langkah 13.2
Tulis kembali soalnya menggunakan dan .
Langkah 14
Gabungkan dan .
Langkah 15
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 16
Integral dari terhadap adalah .
Langkah 17
Sederhanakan.
Langkah 18
Substitusikan kembali untuk setiap variabel substitusi pengintegralan.
Ketuk untuk lebih banyak langkah...
Langkah 18.1
Ganti semua kemunculan dengan .
Langkah 18.2
Ganti semua kemunculan dengan .
Langkah 19
Jawabannya adalah antiturunan dari fungsi .