Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Diferensialkan.
Langkah 1.1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.1.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.2
Evaluasi .
Langkah 1.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.2.3
Kalikan dengan .
Langkah 1.3
Diferensialkan menggunakan Aturan Konstanta.
Langkah 1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.2
Tambahkan dan .
Langkah 2
Langkah 2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.2
Evaluasi .
Langkah 2.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2.3
Kalikan dengan .
Langkah 2.3
Evaluasi .
Langkah 2.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3.3
Kalikan dengan .
Langkah 3
Untuk menentukan nilai maksimum dan minimum lokal dari fungsi, atur turunannya agar sama dengan , lalu selesaikan.
Langkah 4
Langkah 4.1
Tentukan turunan pertamanya.
Langkah 4.1.1
Diferensialkan.
Langkah 4.1.1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 4.1.1.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.1.2
Evaluasi .
Langkah 4.1.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 4.1.2.3
Kalikan dengan .
Langkah 4.1.3
Diferensialkan menggunakan Aturan Konstanta.
Langkah 4.1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 4.1.3.2
Tambahkan dan .
Langkah 4.2
Turunan pertama dari terhadap adalah .
Langkah 5
Langkah 5.1
Buat turunan pertamanya agar sama dengan .
Langkah 5.2
Faktorkan dari .
Langkah 5.2.1
Faktorkan dari .
Langkah 5.2.2
Faktorkan dari .
Langkah 5.2.3
Faktorkan dari .
Langkah 5.3
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 5.4
Atur sama dengan .
Langkah 5.5
Atur agar sama dengan dan selesaikan .
Langkah 5.5.1
Atur sama dengan .
Langkah 5.5.2
Selesaikan untuk .
Langkah 5.5.2.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 5.5.2.2
Ambil akar yang ditentukan dari kedua sisi persamaan untuk menghilangkan eksponen di sisi kiri.
Langkah 5.5.2.3
Sederhanakan .
Langkah 5.5.2.3.1
Tulis kembali sebagai .
Langkah 5.5.2.3.2
Tulis kembali sebagai .
Langkah 5.5.2.3.3
Tulis kembali sebagai .
Langkah 5.5.2.4
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 5.5.2.4.1
Pertama, gunakan nilai positif dari untuk menemukan penyelesaian pertama.
Langkah 5.5.2.4.2
Selanjutnya, gunakan nilai negatif dari untuk menemukan penyelesaian kedua.
Langkah 5.5.2.4.3
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 5.6
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
Langkah 6
Langkah 6.1
Domain dari pernyataan adalah semua bilangan riil, kecuali di mana pernyataannya tidak terdefinisi. Dalam hal ini, tidak ada bilangan riil yang membuat pernyataannya tidak terdefinisi.
Langkah 7
Titik kritis untuk dievaluasi.
Langkah 8
Evaluasi turunan kedua pada . Jika turunan keduanya positif, maka minimum lokal. Jika negatif, maka maksimum lokal.
Langkah 9
Langkah 9.1
Sederhanakan setiap suku.
Langkah 9.1.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 9.1.2
Kalikan dengan .
Langkah 9.2
Tambahkan dan .
Langkah 10
adalah minimum lokal karena nilai dari turunan keduanya positif. Ini disebut sebagai uji turunan kedua.
adalah minimum lokal
Langkah 11
Langkah 11.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 11.2
Sederhanakan hasilnya.
Langkah 11.2.1
Sederhanakan setiap suku.
Langkah 11.2.1.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 11.2.1.2
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 11.2.1.3
Kalikan dengan .
Langkah 11.2.2
Sederhanakan dengan menambahkan bilangan.
Langkah 11.2.2.1
Tambahkan dan .
Langkah 11.2.2.2
Tambahkan dan .
Langkah 11.2.3
Jawaban akhirnya adalah .
Langkah 12
Ini adalah ekstrem lokal untuk .
adalah minimum lokal
Langkah 13