Kalkulus Contoh

Evaluasi Limitnya limit ketika x mendekati 0 dari (5x-3sin(x))/(7x+tan(x))
Langkah 1
Terapkan aturan L'Hospital.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Evaluasi limit dari pembilang dan limit dari penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1
Ambil limit dari pembilang dan limit dari penyebut.
Langkah 1.1.2
Evaluasi limit dari pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.2.1
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 1.1.2.2
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 1.1.2.3
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 1.1.2.4
Pindahkan batas di dalam fungsi trigonometri karena sinus kontinu.
Langkah 1.1.2.5
Evaluasi limit-limit dengan memasukkan ke semua munculnya (Variabel1).
Ketuk untuk lebih banyak langkah...
Langkah 1.1.2.5.1
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.1.2.5.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.1.2.6
Sederhanakan jawabannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.2.6.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.2.6.1.1
Kalikan dengan .
Langkah 1.1.2.6.1.2
Nilai eksak dari adalah .
Langkah 1.1.2.6.1.3
Kalikan dengan .
Langkah 1.1.2.6.2
Tambahkan dan .
Langkah 1.1.3
Evaluasi limit dari penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.3.1
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 1.1.3.2
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 1.1.3.3
Pindahkan batas di dalam fungsi trigonometri karena tangen kontinu.
Langkah 1.1.3.4
Evaluasi limit-limit dengan memasukkan ke semua munculnya (Variabel1).
Ketuk untuk lebih banyak langkah...
Langkah 1.1.3.4.1
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.1.3.4.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.1.3.5
Sederhanakan jawabannya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.3.5.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.3.5.1.1
Kalikan dengan .
Langkah 1.1.3.5.1.2
Nilai eksak dari adalah .
Langkah 1.1.3.5.2
Tambahkan dan .
Langkah 1.1.3.5.3
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.1.3.6
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.1.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.2
Karena adalah bentuk tak tentu, terapkan Kaidah L'Hospital. Kaidah L'Hospital menyatakan bahwa limit dari hasil bagi fungsi sama dengan limit dari hasil bagi turunannya.
Langkah 1.3
Menentukan turunan dari pembilang dan penyebut.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.1
Diferensialkan pembilang dan penyebutnya.
Langkah 1.3.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.3.3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 1.3.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.3.3
Kalikan dengan .
Langkah 1.3.4
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 1.3.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.4.2
Turunan dari terhadap adalah .
Langkah 1.3.5
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.3.6
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 1.3.6.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.6.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.6.3
Kalikan dengan .
Langkah 1.3.7
Turunan dari terhadap adalah .
Langkah 2
Evaluasi limitnya.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Pisahkan limitnya menggunakan Kaidah Hasil Bagi Limit pada limitnya ketika mendekati .
Langkah 2.2
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 2.3
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 2.4
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 2.5
Pindahkan batas di dalam fungsi trigonometri karena kosinus kontinu.
Langkah 2.6
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 2.7
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 2.8
Pindahkan pangkat dari di luar limit menggunakan Kaidah Pangkat Limit.
Langkah 2.9
Pindahkan batas di dalam fungsi trigonometri karena sekan kontinu.
Langkah 3
Evaluasi limit-limit dengan memasukkan ke semua munculnya (Variabel1).
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 3.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 4
Sederhanakan jawabannya.
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.1
Nilai eksak dari adalah .
Langkah 4.1.2
Kalikan dengan .
Langkah 4.1.3
Kurangi dengan .
Langkah 4.2
Sederhanakan penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 4.2.1
Nilai eksak dari adalah .
Langkah 4.2.2
Satu dipangkat berapa pun sama dengan satu.
Langkah 4.2.3
Tambahkan dan .
Langkah 4.3
Hapus faktor persekutuan dari dan .
Ketuk untuk lebih banyak langkah...
Langkah 4.3.1
Faktorkan dari .
Langkah 4.3.2
Batalkan faktor persekutuan.
Ketuk untuk lebih banyak langkah...
Langkah 4.3.2.1
Faktorkan dari .
Langkah 4.3.2.2
Batalkan faktor persekutuan.
Langkah 4.3.2.3
Tulis kembali pernyataannya.
Langkah 5
Hasilnya dapat ditampilkan dalam beberapa bentuk.
Bentuk Eksak:
Bentuk Desimal: