Kalkulus Contoh

Tentukan Turunan - d/dx (x^2-3)e^(-x)
Langkah 1
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 2.2
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana =.
Langkah 2.3
Ganti semua kemunculan dengan .
Langkah 3
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.3
Sederhanakan pernyataannya.
Ketuk untuk lebih banyak langkah...
Langkah 3.3.1
Kalikan dengan .
Langkah 3.3.2
Pindahkan ke sebelah kiri .
Langkah 3.3.3
Tulis kembali sebagai .
Langkah 3.4
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 3.5
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.6
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.7
Tambahkan dan .
Langkah 4
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Terapkan sifat distributif.
Langkah 4.2
Terapkan sifat distributif.
Langkah 4.3
Kalikan dengan .
Langkah 4.4
Susun kembali suku-suku.
Langkah 4.5
Susun kembali faktor-faktor dalam .