Kalkulus Contoh

Cari Titik-titik Beloknya f(x)=-2/5x^6+5x^4
Langkah 1
Tentukan turunan keduanya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Tentukan turunan pertamanya.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.1.2
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.2.3
Kalikan dengan .
Langkah 1.1.2.4
Gabungkan dan .
Langkah 1.1.2.5
Kalikan dengan .
Langkah 1.1.2.6
Gabungkan dan .
Langkah 1.1.2.7
Pindahkan tanda negatif di depan pecahan.
Langkah 1.1.3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.3.3
Kalikan dengan .
Langkah 1.2
Tentukan turunan keduanya.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.2.2
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 1.2.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.2.2.3
Kalikan dengan .
Langkah 1.2.2.4
Gabungkan dan .
Langkah 1.2.2.5
Kalikan dengan .
Langkah 1.2.2.6
Gabungkan dan .
Langkah 1.2.2.7
Hapus faktor persekutuan dari dan .
Ketuk untuk lebih banyak langkah...
Langkah 1.2.2.7.1
Faktorkan dari .
Langkah 1.2.2.7.2
Batalkan faktor persekutuan.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.2.7.2.1
Faktorkan dari .
Langkah 1.2.2.7.2.2
Batalkan faktor persekutuan.
Langkah 1.2.2.7.2.3
Tulis kembali pernyataannya.
Langkah 1.2.2.7.2.4
Bagilah dengan .
Langkah 1.2.3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 1.2.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.2.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.2.3.3
Kalikan dengan .
Langkah 1.3
Turunan kedua dari terhadap adalah .
Langkah 2
Atur turunan keduanya agar sama dengan dan selesaikan persamaan .
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Atur turunan keduanya sama dengan .
Langkah 2.2
Faktorkan sisi kiri persamaannya.
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1
Tulis kembali sebagai .
Langkah 2.2.2
Biarkan . Masukkan untuk semua kejadian .
Langkah 2.2.3
Faktorkan dari .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.3.1
Faktorkan dari .
Langkah 2.2.3.2
Faktorkan dari .
Langkah 2.2.3.3
Faktorkan dari .
Langkah 2.2.4
Ganti semua kemunculan dengan .
Langkah 2.3
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 2.4
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 2.4.1
Atur sama dengan .
Langkah 2.4.2
Selesaikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 2.4.2.1
Ambil akar yang ditentukan dari kedua sisi persamaan untuk menghilangkan eksponen di sisi kiri.
Langkah 2.4.2.2
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 2.4.2.2.1
Tulis kembali sebagai .
Langkah 2.4.2.2.2
Mengeluarkan suku-suku dari bawah akar, dengan asumsi bahwa bilangan riil positif.
Langkah 2.4.2.2.3
Tambah atau kurang adalah .
Langkah 2.5
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 2.5.1
Atur sama dengan .
Langkah 2.5.2
Selesaikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 2.5.2.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 2.5.2.2
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 2.5.2.2.1
Bagilah setiap suku di dengan .
Langkah 2.5.2.2.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 2.5.2.2.2.1
Membagi dua nilai negatif menghasilkan nilai positif.
Langkah 2.5.2.2.2.2
Bagilah dengan .
Langkah 2.5.2.2.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 2.5.2.2.3.1
Bagilah dengan .
Langkah 2.5.2.3
Ambil akar yang ditentukan dari kedua sisi persamaan untuk menghilangkan eksponen di sisi kiri.
Langkah 2.5.2.4
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Ketuk untuk lebih banyak langkah...
Langkah 2.5.2.4.1
Pertama, gunakan nilai positif dari untuk menemukan penyelesaian pertama.
Langkah 2.5.2.4.2
Selanjutnya, gunakan nilai negatif dari untuk menemukan penyelesaian kedua.
Langkah 2.5.2.4.3
Penyelesaian lengkap adalah hasil dari bagian positif dan negatif dari penyelesaian tersebut.
Langkah 2.6
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
Langkah 3
Tentukan titik di mana turunan keduanya adalah .
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Substitusikan dalam untuk menemukan nilai dari .
Ketuk untuk lebih banyak langkah...
Langkah 3.1.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 3.1.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 3.1.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 3.1.2.1.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 3.1.2.1.2
Kalikan .
Ketuk untuk lebih banyak langkah...
Langkah 3.1.2.1.2.1
Kalikan dengan .
Langkah 3.1.2.1.2.2
Kalikan dengan .
Langkah 3.1.2.1.3
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 3.1.2.1.4
Kalikan dengan .
Langkah 3.1.2.2
Tambahkan dan .
Langkah 3.1.2.3
Jawaban akhirnya adalah .
Langkah 3.2
Titiknya yang ditemukan dengan mensubsitusi dalam adalah . Titik ini dapat menjadi titik belok.
Langkah 3.3
Substitusikan dalam untuk menemukan nilai dari .
Ketuk untuk lebih banyak langkah...
Langkah 3.3.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 3.3.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 3.3.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 3.3.2.1.1
Tulis kembali sebagai .
Ketuk untuk lebih banyak langkah...
Langkah 3.3.2.1.1.1
Gunakan untuk menuliskan kembali sebagai .
Langkah 3.3.2.1.1.2
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 3.3.2.1.1.3
Gabungkan dan .
Langkah 3.3.2.1.1.4
Hapus faktor persekutuan dari dan .
Ketuk untuk lebih banyak langkah...
Langkah 3.3.2.1.1.4.1
Faktorkan dari .
Langkah 3.3.2.1.1.4.2
Batalkan faktor persekutuan.
Ketuk untuk lebih banyak langkah...
Langkah 3.3.2.1.1.4.2.1
Faktorkan dari .
Langkah 3.3.2.1.1.4.2.2
Batalkan faktor persekutuan.
Langkah 3.3.2.1.1.4.2.3
Tulis kembali pernyataannya.
Langkah 3.3.2.1.1.4.2.4
Bagilah dengan .
Langkah 3.3.2.1.2
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 3.3.2.1.2.1
Pindahkan negatif pertama pada ke dalam pembilangnya.
Langkah 3.3.2.1.2.2
Faktorkan dari .
Langkah 3.3.2.1.2.3
Batalkan faktor persekutuan.
Langkah 3.3.2.1.2.4
Tulis kembali pernyataannya.
Langkah 3.3.2.1.3
Naikkan menjadi pangkat .
Langkah 3.3.2.1.4
Kalikan dengan .
Langkah 3.3.2.1.5
Tulis kembali sebagai .
Ketuk untuk lebih banyak langkah...
Langkah 3.3.2.1.5.1
Gunakan untuk menuliskan kembali sebagai .
Langkah 3.3.2.1.5.2
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 3.3.2.1.5.3
Gabungkan dan .
Langkah 3.3.2.1.5.4
Hapus faktor persekutuan dari dan .
Ketuk untuk lebih banyak langkah...
Langkah 3.3.2.1.5.4.1
Faktorkan dari .
Langkah 3.3.2.1.5.4.2
Batalkan faktor persekutuan.
Ketuk untuk lebih banyak langkah...
Langkah 3.3.2.1.5.4.2.1
Faktorkan dari .
Langkah 3.3.2.1.5.4.2.2
Batalkan faktor persekutuan.
Langkah 3.3.2.1.5.4.2.3
Tulis kembali pernyataannya.
Langkah 3.3.2.1.5.4.2.4
Bagilah dengan .
Langkah 3.3.2.1.6
Kalikan dengan dengan menambahkan eksponennya.
Ketuk untuk lebih banyak langkah...
Langkah 3.3.2.1.6.1
Kalikan dengan .
Ketuk untuk lebih banyak langkah...
Langkah 3.3.2.1.6.1.1
Naikkan menjadi pangkat .
Langkah 3.3.2.1.6.1.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 3.3.2.1.6.2
Tambahkan dan .
Langkah 3.3.2.1.7
Naikkan menjadi pangkat .
Langkah 3.3.2.2
Tambahkan dan .
Langkah 3.3.2.3
Jawaban akhirnya adalah .
Langkah 3.4
Titiknya yang ditemukan dengan mensubsitusi dalam adalah . Titik ini dapat menjadi titik belok.
Langkah 3.5
Substitusikan dalam untuk menemukan nilai dari .
Ketuk untuk lebih banyak langkah...
Langkah 3.5.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 3.5.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 3.5.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 3.5.2.1.1
Terapkan kaidah hasil kali ke .
Langkah 3.5.2.1.2
Kalikan dengan dengan menambahkan eksponennya.
Ketuk untuk lebih banyak langkah...
Langkah 3.5.2.1.2.1
Pindahkan .
Langkah 3.5.2.1.2.2
Kalikan dengan .
Ketuk untuk lebih banyak langkah...
Langkah 3.5.2.1.2.2.1
Naikkan menjadi pangkat .
Langkah 3.5.2.1.2.2.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 3.5.2.1.2.3
Tambahkan dan .
Langkah 3.5.2.1.3
Naikkan menjadi pangkat .
Langkah 3.5.2.1.4
Tulis kembali sebagai .
Ketuk untuk lebih banyak langkah...
Langkah 3.5.2.1.4.1
Gunakan untuk menuliskan kembali sebagai .
Langkah 3.5.2.1.4.2
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 3.5.2.1.4.3
Gabungkan dan .
Langkah 3.5.2.1.4.4
Hapus faktor persekutuan dari dan .
Ketuk untuk lebih banyak langkah...
Langkah 3.5.2.1.4.4.1
Faktorkan dari .
Langkah 3.5.2.1.4.4.2
Batalkan faktor persekutuan.
Ketuk untuk lebih banyak langkah...
Langkah 3.5.2.1.4.4.2.1
Faktorkan dari .
Langkah 3.5.2.1.4.4.2.2
Batalkan faktor persekutuan.
Langkah 3.5.2.1.4.4.2.3
Tulis kembali pernyataannya.
Langkah 3.5.2.1.4.4.2.4
Bagilah dengan .
Langkah 3.5.2.1.5
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 3.5.2.1.5.1
Pindahkan negatif pertama pada ke dalam pembilangnya.
Langkah 3.5.2.1.5.2
Faktorkan dari .
Langkah 3.5.2.1.5.3
Batalkan faktor persekutuan.
Langkah 3.5.2.1.5.4
Tulis kembali pernyataannya.
Langkah 3.5.2.1.6
Naikkan menjadi pangkat .
Langkah 3.5.2.1.7
Kalikan dengan .
Langkah 3.5.2.1.8
Terapkan kaidah hasil kali ke .
Langkah 3.5.2.1.9
Naikkan menjadi pangkat .
Langkah 3.5.2.1.10
Kalikan dengan .
Langkah 3.5.2.1.11
Tulis kembali sebagai .
Ketuk untuk lebih banyak langkah...
Langkah 3.5.2.1.11.1
Gunakan untuk menuliskan kembali sebagai .
Langkah 3.5.2.1.11.2
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 3.5.2.1.11.3
Gabungkan dan .
Langkah 3.5.2.1.11.4
Hapus faktor persekutuan dari dan .
Ketuk untuk lebih banyak langkah...
Langkah 3.5.2.1.11.4.1
Faktorkan dari .
Langkah 3.5.2.1.11.4.2
Batalkan faktor persekutuan.
Ketuk untuk lebih banyak langkah...
Langkah 3.5.2.1.11.4.2.1
Faktorkan dari .
Langkah 3.5.2.1.11.4.2.2
Batalkan faktor persekutuan.
Langkah 3.5.2.1.11.4.2.3
Tulis kembali pernyataannya.
Langkah 3.5.2.1.11.4.2.4
Bagilah dengan .
Langkah 3.5.2.1.12
Kalikan dengan dengan menambahkan eksponennya.
Ketuk untuk lebih banyak langkah...
Langkah 3.5.2.1.12.1
Kalikan dengan .
Ketuk untuk lebih banyak langkah...
Langkah 3.5.2.1.12.1.1
Naikkan menjadi pangkat .
Langkah 3.5.2.1.12.1.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 3.5.2.1.12.2
Tambahkan dan .
Langkah 3.5.2.1.13
Naikkan menjadi pangkat .
Langkah 3.5.2.2
Tambahkan dan .
Langkah 3.5.2.3
Jawaban akhirnya adalah .
Langkah 3.6
Titiknya yang ditemukan dengan mensubsitusi dalam adalah . Titik ini dapat menjadi titik belok.
Langkah 3.7
Tentukan titik-titik yang dapat menjadi titik belok.
Langkah 4
Pisahkan menjadi interval di sekitar titik-titik yang dapat berpotensi menjadi titik-titik belok.
Langkah 5
Substitusikan nilai dari interval ke dalam turunan keduanya untuk menentukan apakah naik atau turun.
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 5.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.1.1
Naikkan menjadi pangkat .
Langkah 5.2.1.2
Kalikan dengan .
Langkah 5.2.1.3
Naikkan menjadi pangkat .
Langkah 5.2.1.4
Kalikan dengan .
Langkah 5.2.2
Tambahkan dan .
Langkah 5.2.3
Jawaban akhirnya adalah .
Langkah 5.3
Pada , turunan kedua adalah . Karena ini negatif, turunan kedua menurun pada interval
Menurun pada karena
Menurun pada karena
Langkah 6
Substitusikan nilai dari interval ke dalam turunan keduanya untuk menentukan apakah naik atau turun.
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 6.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.1.1
Naikkan menjadi pangkat .
Langkah 6.2.1.2
Kalikan dengan .
Langkah 6.2.1.3
Naikkan menjadi pangkat .
Langkah 6.2.1.4
Kalikan dengan .
Langkah 6.2.2
Tambahkan dan .
Langkah 6.2.3
Jawaban akhirnya adalah .
Langkah 6.3
Pada , turunan keduanya adalah . Karena ini positif, turunan keduanya meningkat pada interval .
Meningkat pada karena
Meningkat pada karena
Langkah 7
Substitusikan nilai dari interval ke dalam turunan keduanya untuk menentukan apakah naik atau turun.
Ketuk untuk lebih banyak langkah...
Langkah 7.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 7.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 7.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 7.2.1.1
Naikkan menjadi pangkat .
Langkah 7.2.1.2
Kalikan dengan .
Langkah 7.2.1.3
Naikkan menjadi pangkat .
Langkah 7.2.1.4
Kalikan dengan .
Langkah 7.2.2
Tambahkan dan .
Langkah 7.2.3
Jawaban akhirnya adalah .
Langkah 7.3
Pada , turunan keduanya adalah . Karena ini positif, turunan keduanya meningkat pada interval .
Meningkat pada karena
Meningkat pada karena
Langkah 8
Substitusikan nilai dari interval ke dalam turunan keduanya untuk menentukan apakah naik atau turun.
Ketuk untuk lebih banyak langkah...
Langkah 8.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 8.2
Sederhanakan hasilnya.
Ketuk untuk lebih banyak langkah...
Langkah 8.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 8.2.1.1
Naikkan menjadi pangkat .
Langkah 8.2.1.2
Kalikan dengan .
Langkah 8.2.1.3
Naikkan menjadi pangkat .
Langkah 8.2.1.4
Kalikan dengan .
Langkah 8.2.2
Tambahkan dan .
Langkah 8.2.3
Jawaban akhirnya adalah .
Langkah 8.3
Pada , turunan kedua adalah . Karena ini negatif, turunan kedua menurun pada interval
Menurun pada karena
Menurun pada karena
Langkah 9
Titik belok adalah sebuah titik pada kurva di mana kecekungan berubah dari positif ke negatif atau dari negatif ke positif. Titik-titik belok dalam kasus ini adalah .
Langkah 10