Kalkulus Contoh

Selesaikan Persamaan Diferensial (2y^2+4x)dx+3x(yd)y=0
Langkah 1
Temukan di mana .
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Diferensialkan terhadap .
Langkah 1.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.3
Kalikan dengan .
Langkah 1.4
Diferensialkan menggunakan Aturan Konstanta.
Ketuk untuk lebih banyak langkah...
Langkah 1.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.4.2
Tambahkan dan .
Langkah 2
Temukan di mana .
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Diferensialkan terhadap .
Langkah 2.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.4
Kalikan dengan .
Langkah 3
Periksa bahwa .
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Substitusikan ke dan ke .
Langkah 3.2
Karena sisi kiri tidak sama dengan sisi kanan, maka persamaan bukan identitas trigonometri.
bukan identitas.
bukan identitas.
Langkah 4
Temukan faktor integral .
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Substitusikan untuk .
Langkah 4.2
Substitusikan untuk .
Langkah 4.3
Substitusikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 4.3.1
Substitusikan untuk .
Langkah 4.3.2
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 4.3.2.1
Faktorkan dari .
Ketuk untuk lebih banyak langkah...
Langkah 4.3.2.1.1
Faktorkan dari .
Langkah 4.3.2.1.2
Faktorkan dari .
Langkah 4.3.2.1.3
Faktorkan dari .
Langkah 4.3.2.2
Kalikan dengan .
Langkah 4.3.2.3
Kurangi dengan .
Langkah 4.3.3
Kalikan dengan .
Langkah 4.3.4
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 4.3.4.1
Batalkan faktor persekutuan.
Langkah 4.3.4.2
Tulis kembali pernyataannya.
Langkah 4.4
Temukan faktor integral .
Langkah 5
Evaluasi integral .
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 5.2
Integral dari terhadap adalah .
Langkah 5.3
Sederhanakan.
Langkah 5.4
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 5.4.1
Sederhanakan dengan memindahkan ke dalam logaritma.
Langkah 5.4.2
Eksponensial dan logaritma adalah fungsi balikan.
Langkah 6
Kalikan kedua sisi dengan faktor integral .
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Kalikan dengan .
Langkah 6.2
Terapkan sifat distributif.
Langkah 6.3
Kalikan dengan dengan menambahkan eksponennya.
Ketuk untuk lebih banyak langkah...
Langkah 6.3.1
Pindahkan .
Langkah 6.3.2
Kalikan dengan .
Ketuk untuk lebih banyak langkah...
Langkah 6.3.2.1
Naikkan menjadi pangkat .
Langkah 6.3.2.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 6.3.3
Tuliskan sebagai pecahan dengan penyebut persekutuan.
Langkah 6.3.4
Gabungkan pembilang dari penyebut persekutuan.
Langkah 6.3.5
Tambahkan dan .
Langkah 6.4
Kalikan dengan .
Langkah 6.5
Kalikan dengan dengan menambahkan eksponennya.
Ketuk untuk lebih banyak langkah...
Langkah 6.5.1
Pindahkan .
Langkah 6.5.2
Kalikan dengan .
Ketuk untuk lebih banyak langkah...
Langkah 6.5.2.1
Naikkan menjadi pangkat .
Langkah 6.5.2.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 6.5.3
Tuliskan sebagai pecahan dengan penyebut persekutuan.
Langkah 6.5.4
Gabungkan pembilang dari penyebut persekutuan.
Langkah 6.5.5
Tambahkan dan .
Langkah 6.6
Susun kembali faktor-faktor dalam .
Langkah 7
Atur agar sama dengan integral .
Langkah 8
Integralkan untuk menemukan .
Ketuk untuk lebih banyak langkah...
Langkah 8.1
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 8.2
Menurut Kaidah Pangkat, integral dari terhadap adalah .
Langkah 8.3
Sederhanakan jawabannya.
Ketuk untuk lebih banyak langkah...
Langkah 8.3.1
Tulis kembali sebagai .
Langkah 8.3.2
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 8.3.2.1
Gabungkan dan .
Langkah 8.3.2.2
Gabungkan dan .
Langkah 8.3.2.3
Pindahkan ke sebelah kiri .
Langkah 8.3.2.4
Kalikan dengan .
Langkah 8.3.2.5
Gabungkan dan .
Langkah 8.3.3
Susun kembali suku-suku.
Langkah 9
Karena integral akan mengandung konstanta integral, kita dapat mengganti dengan .
Langkah 10
Atur .
Langkah 11
Temukan .
Ketuk untuk lebih banyak langkah...
Langkah 11.1
Diferensialkan terhadap .
Langkah 11.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 11.3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 11.3.1
Gabungkan dan .
Langkah 11.3.2
Gabungkan dan .
Langkah 11.3.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 11.3.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 11.3.5
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 11.3.6
Gabungkan dan .
Langkah 11.3.7
Gabungkan pembilang dari penyebut persekutuan.
Langkah 11.3.8
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 11.3.8.1
Kalikan dengan .
Langkah 11.3.8.2
Kurangi dengan .
Langkah 11.3.9
Gabungkan dan .
Langkah 11.3.10
Kalikan dengan .
Langkah 11.3.11
Kalikan dengan .
Langkah 11.3.12
Kalikan dengan .
Langkah 11.3.13
Faktorkan dari .
Langkah 11.3.14
Batalkan faktor persekutuan.
Ketuk untuk lebih banyak langkah...
Langkah 11.3.14.1
Faktorkan dari .
Langkah 11.3.14.2
Batalkan faktor persekutuan.
Langkah 11.3.14.3
Tulis kembali pernyataannya.
Langkah 11.3.14.4
Bagilah dengan .
Langkah 11.4
Diferensialkan menggunakan aturan fungsi yang menyatakan bahwa turunan adalah .
Langkah 11.5
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 11.5.1
Susun kembali suku-suku.
Langkah 11.5.2
Susun kembali faktor-faktor dalam .
Langkah 12
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 12.1
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 12.1.1
Gabungkan suku balikan dalam .
Ketuk untuk lebih banyak langkah...
Langkah 12.1.1.1
Kurangi dengan .
Langkah 12.1.1.2
Tambahkan dan .
Langkah 12.1.2
Tambahkan ke kedua sisi persamaan.
Langkah 13
Temukan untuk menemukan .
Ketuk untuk lebih banyak langkah...
Langkah 13.1
Integralkan kedua sisi .
Langkah 13.2
Evaluasi .
Langkah 13.3
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 13.4
Menurut Kaidah Pangkat, integral dari terhadap adalah .
Langkah 13.5
Sederhanakan jawabannya.
Ketuk untuk lebih banyak langkah...
Langkah 13.5.1
Tulis kembali sebagai .
Langkah 13.5.2
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 13.5.2.1
Gabungkan dan .
Langkah 13.5.2.2
Kalikan dengan .
Langkah 14
Substitusikan dalam .
Langkah 15
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 15.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 15.1.1
Gabungkan dan .
Langkah 15.1.2
Gabungkan dan .
Langkah 15.1.3
Gabungkan dan .
Langkah 15.2
Susun kembali faktor-faktor dalam .