Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Diferensialkan terhadap .
Langkah 1.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.3
Evaluasi .
Langkah 1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.3
Kalikan dengan .
Langkah 1.4
Evaluasi .
Langkah 1.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.4.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.4.3
Kalikan dengan .
Langkah 1.5
Susun kembali suku-suku.
Langkah 2
Langkah 2.1
Diferensialkan terhadap .
Langkah 2.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.3
Evaluasi .
Langkah 2.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3.3
Kalikan dengan .
Langkah 2.4
Evaluasi .
Langkah 2.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.4.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.4.3
Kalikan dengan .
Langkah 3
Langkah 3.1
Substitusikan ke dan ke .
Langkah 3.2
Karena sisi kiri tidak sama dengan sisi kanan, maka persamaan bukan identitas trigonometri.
bukan identitas.
bukan identitas.
Langkah 4
Langkah 4.1
Substitusikan untuk .
Langkah 4.2
Substitusikan untuk .
Langkah 4.3
Substitusikan untuk .
Langkah 4.3.1
Substitusikan untuk .
Langkah 4.3.2
Sederhanakan pembilangnya.
Langkah 4.3.2.1
Terapkan sifat distributif.
Langkah 4.3.2.2
Kalikan dengan .
Langkah 4.3.2.3
Kalikan dengan .
Langkah 4.3.2.4
Kurangi dengan .
Langkah 4.3.2.5
Kurangi dengan .
Langkah 4.3.2.6
Faktorkan dari .
Langkah 4.3.2.6.1
Faktorkan dari .
Langkah 4.3.2.6.2
Faktorkan dari .
Langkah 4.3.2.6.3
Faktorkan dari .
Langkah 4.3.3
Faktorkan dari .
Langkah 4.3.3.1
Faktorkan dari .
Langkah 4.3.3.2
Faktorkan dari .
Langkah 4.3.3.3
Faktorkan dari .
Langkah 4.3.4
Batalkan faktor persekutuan dari .
Langkah 4.3.4.1
Batalkan faktor persekutuan.
Langkah 4.3.4.2
Tulis kembali pernyataannya.
Langkah 4.3.5
Hapus faktor persekutuan dari dan .
Langkah 4.3.5.1
Faktorkan dari .
Langkah 4.3.5.2
Tulis kembali sebagai .
Langkah 4.3.5.3
Faktorkan dari .
Langkah 4.3.5.4
Tulis kembali sebagai .
Langkah 4.3.5.5
Susun kembali suku-suku.
Langkah 4.3.5.6
Batalkan faktor persekutuan.
Langkah 4.3.5.7
Tulis kembali pernyataannya.
Langkah 4.3.6
Kalikan dengan .
Langkah 4.3.7
Substitusikan untuk .
Langkah 4.4
Temukan faktor integral .
Langkah 5
Langkah 5.1
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 5.2
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 5.3
Kalikan dengan .
Langkah 5.4
Integral dari terhadap adalah .
Langkah 5.5
Sederhanakan.
Langkah 5.6
Sederhanakan setiap suku.
Langkah 5.6.1
Sederhanakan dengan memindahkan ke dalam logaritma.
Langkah 5.6.2
Eksponensial dan logaritma adalah fungsi balikan.
Langkah 5.6.3
Hapus nilai mutlak dalam karena eksponensiasi dengan pangkat genap selalu positif.
Langkah 5.6.4
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 6
Langkah 6.1
Kalikan dengan .
Langkah 6.2
Kalikan dengan .
Langkah 6.3
Faktorkan dari .
Langkah 6.3.1
Faktorkan dari .
Langkah 6.3.2
Faktorkan dari .
Langkah 6.3.3
Faktorkan dari .
Langkah 6.4
Hapus faktor persekutuan dari dan .
Langkah 6.4.1
Faktorkan dari .
Langkah 6.4.2
Batalkan faktor persekutuan.
Langkah 6.4.2.1
Faktorkan dari .
Langkah 6.4.2.2
Batalkan faktor persekutuan.
Langkah 6.4.2.3
Tulis kembali pernyataannya.
Langkah 6.5
Kalikan dengan .
Langkah 6.6
Kalikan dengan .
Langkah 6.7
Faktorkan dari .
Langkah 6.7.1
Faktorkan dari .
Langkah 6.7.2
Faktorkan dari .
Langkah 6.7.3
Faktorkan dari .
Langkah 7
Atur agar sama dengan integral .
Langkah 8
Langkah 8.1
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 8.2
Perluas .
Langkah 8.2.1
Terapkan sifat distributif.
Langkah 8.2.2
Pindahkan tanda kurung.
Langkah 8.2.3
Hilangkan tanda kurung.
Langkah 8.2.4
Susun kembali dan .
Langkah 8.2.5
Susun kembali dan .
Langkah 8.2.6
Naikkan menjadi pangkat .
Langkah 8.2.7
Naikkan menjadi pangkat .
Langkah 8.2.8
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 8.2.9
Tambahkan dan .
Langkah 8.3
Bagi integral tunggal menjadi beberapa integral.
Langkah 8.4
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 8.5
Menurut Kaidah Pangkat, integral dari terhadap adalah .
Langkah 8.6
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 8.7
Menurut Kaidah Pangkat, integral dari terhadap adalah .
Langkah 8.8
Sederhanakan.
Langkah 9
Karena integral akan mengandung konstanta integral, kita dapat mengganti dengan .
Langkah 10
Atur .
Langkah 11
Langkah 11.1
Diferensialkan terhadap .
Langkah 11.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 11.3
Evaluasi .
Langkah 11.3.1
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 11.3.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 11.3.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 11.3.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 11.3.5
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 11.3.6
Tulis kembali sebagai .
Langkah 11.3.7
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 11.3.8
Pindahkan ke sebelah kiri .
Langkah 11.3.9
Tambahkan dan .
Langkah 11.3.10
Gabungkan dan .
Langkah 11.3.11
Gabungkan dan .
Langkah 11.3.12
Gabungkan dan .
Langkah 11.3.13
Pindahkan ke sebelah kiri .
Langkah 11.3.14
Hapus faktor persekutuan dari dan .
Langkah 11.3.14.1
Faktorkan dari .
Langkah 11.3.14.2
Batalkan faktor persekutuan.
Langkah 11.3.14.2.1
Naikkan menjadi pangkat .
Langkah 11.3.14.2.2
Faktorkan dari .
Langkah 11.3.14.2.3
Batalkan faktor persekutuan.
Langkah 11.3.14.2.4
Tulis kembali pernyataannya.
Langkah 11.3.14.2.5
Bagilah dengan .
Langkah 11.4
Diferensialkan menggunakan aturan fungsi yang menyatakan bahwa turunan adalah .
Langkah 11.5
Sederhanakan.
Langkah 11.5.1
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 11.5.2
Terapkan sifat distributif.
Langkah 11.5.3
Gabungkan suku-sukunya.
Langkah 11.5.3.1
Gabungkan dan .
Langkah 11.5.3.2
Gabungkan dan .
Langkah 11.5.3.3
Hapus faktor persekutuan dari dan .
Langkah 11.5.3.3.1
Faktorkan dari .
Langkah 11.5.3.3.2
Batalkan faktor persekutuan.
Langkah 11.5.3.3.2.1
Kalikan dengan .
Langkah 11.5.3.3.2.2
Batalkan faktor persekutuan.
Langkah 11.5.3.3.2.3
Tulis kembali pernyataannya.
Langkah 11.5.3.3.2.4
Bagilah dengan .
Langkah 11.5.3.4
Gabungkan dan .
Langkah 11.5.3.5
Kurangi dengan .
Langkah 11.5.4
Susun kembali suku-suku.
Langkah 12
Langkah 12.1
Pindahkan semua suku yang mengandung variabel ke sisi kiri dari persamaan.
Langkah 12.1.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 12.1.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 12.1.3
Sederhanakan setiap suku.
Langkah 12.1.3.1
Terapkan sifat distributif.
Langkah 12.1.3.2
Kalikan dengan dengan menambahkan eksponennya.
Langkah 12.1.3.2.1
Pindahkan .
Langkah 12.1.3.2.2
Kalikan dengan .
Langkah 12.1.3.2.2.1
Naikkan menjadi pangkat .
Langkah 12.1.3.2.2.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 12.1.3.2.3
Tambahkan dan .
Langkah 12.1.3.3
Kalikan .
Langkah 12.1.3.3.1
Kalikan dengan .
Langkah 12.1.3.3.2
Kalikan dengan .
Langkah 12.1.3.4
Sederhanakan setiap suku.
Langkah 12.1.3.4.1
Tulis kembali menggunakan sifat komutatif dari perkalian.
Langkah 12.1.3.4.2
Kalikan dengan .
Langkah 12.1.4
Gabungkan suku balikan dalam .
Langkah 12.1.4.1
Tambahkan dan .
Langkah 12.1.4.2
Tambahkan dan .
Langkah 12.1.5
Hapus faktor persekutuan dari dan .
Langkah 12.1.5.1
Faktorkan dari .
Langkah 12.1.5.2
Batalkan faktor persekutuan.
Langkah 12.1.5.2.1
Kalikan dengan .
Langkah 12.1.5.2.2
Batalkan faktor persekutuan.
Langkah 12.1.5.2.3
Tulis kembali pernyataannya.
Langkah 12.1.5.2.4
Bagilah dengan .
Langkah 12.1.6
Gabungkan suku balikan dalam .
Langkah 12.1.6.1
Kurangi dengan .
Langkah 12.1.6.2
Tambahkan dan .
Langkah 13
Langkah 13.1
Integralkan kedua sisi .
Langkah 13.2
Evaluasi .
Langkah 13.3
Integral dari terhadap adalah .
Langkah 13.4
Tambahkan dan .
Langkah 14
Substitusikan dalam .
Langkah 15
Langkah 15.1
Kalikan dengan .
Langkah 15.2
Faktorkan dari .
Langkah 15.2.1
Faktorkan dari .
Langkah 15.2.2
Kalikan dengan .
Langkah 15.2.3
Faktorkan dari .